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Figure 1: Two snakes related by a highly non-rigid transformation can be matched with our method. A user selects a region
(green) and similar regions (red) are automatically found, making it possible to transfer the texture inside the green region to
the red regions. Two operations are performed and the results with an added background texture are shown in the last column.

Abstract
In this paper, we present a method for non-rigid, partial shape matching in vector graphics. Given a user-specified
query region in a 2D shape, similar regions are found, even if they are non-linearly distorted. Furthermore, a non-
linear mapping is established between the query regions and these matches, which allows the automatic transfer
of editing operations such as texturing. This is achieved by a two-step approach. First, point-wise correspondences
between the query region and the whole shape are established. The transformation parameters of these correspon-
dences are registered in an appropriate transformation space. For transformations between similar regions, these
parameters form surfaces in transformation space, which are extracted in the second step of our method. The
extracted regions may be related to the query region by a non-rigid transform, enabling non-rigid shape matching.

Categories and Subject Descriptors (according to ACM CCS): I.3.5 [Computer Graphics]: Computational Geometry
and Object Modeling—Hierarchy and geometric transforms I.4.8 [Computer Graphics]: Scene Analysis—Shape

1. Introduction

Geometric manipulation of 2D images or 3D models is a
central component of many computer graphics applications.
Throughout the years, these editing tools have become in-
creasingly sophisticated and a recent research trend is the
intelligent manipulation of many similar shapes with only a
single interaction. For a wide range of applications, the abil-
ity to quickly select and edit model parts that are geometri-

cally similar – but not identical – can considerably increase
the efficiency of the editing work flow.

This inevitably leads to the field of shape matching which
traditionally studies point correspondences. A point corre-
spondence matches a point in a user-defined query region to
similar points outside (target points) according to a local de-
scriptor, such as SIFT [Low04] or Shape Contexts [BMP02].
In this paper, we refer to these point correspondences as first-
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order similarities. In order to match a whole query region,
different approaches exist. One is to find groups of points
correspondences that preserve the pair-wise point distances
of the query region in their respective target region, which
is used in isometric shape matching [EK03, ASP∗05, MS05,
BBK06, PBB∗13]. A different approach tries to find corre-
spondences that have similar transformations between query
and target points [GCO06, MGP06, MGP07] (cf. Figure 2a
and 2b). We will refer the similarity between point corre-
spondences as second-order similarity.

Given a query region, it is often desirable to identify non-
linearly distorted regions, due to perspective, object bend-
ing, different object positions and orientations, etc. Unfortu-
nately, requiring the matched point pairs to have an identi-
cal transform only lets us find rigid matches. In this work,
we overcome this limitation by introducing the concept of
transformation parameter similarity (TPS). We regard two
regions as similar if they are related by approximately rigid
first-order similarities and if the corresponding transforma-
tion parameters vary slowly over the region, i.e., have a small
gradient. An example is given in Figure 2c, where the subre-
gions are related by approximately rigid transforms, whereas
globally, the two regions are transformed non-rigidly. Note
that the rotation parameter varies slowly over the region.
Our requirement of approximately rigid local transforma-
tions ensures that small-scale geometric detail is preserved
and the region is not distorted beyond recognition.

Based on this concept, the main contribution of this pa-
per is a novel method to find non-rigid matches to a user-
specified query region in a vector image. Furthermore, we
establish a dense mapping between the query region and all
matched regions. This allows the transfer of editing opera-
tions between complex 2D shapes, such as painted strokes
or textures (cf. Figure 1). Currently, our algorithm focuses
on 2D shapes given by contour segments, but it could be
generalized to 3D shapes given by 2D boundary meshes in
future work.

2. Related Work

First-order point descriptors have been thoroughly re-
searched and two main categories can be identified. Local
descriptors, such as SIFT features [Low04] or shape con-
texts [BMP02] provide a matching of local shape features.
Global descriptors, like Shape-DNA [RWP06] or the Heat
Kernel Signature [SOG09], take whole shape into account,
when establishing point correspondences, but are usually
more expensive to compute and they are not applicable to
our use case of 2D shapes. In this work, we use shape con-
texts to establish first-order similarities.

The matching of 3D shapes received a great deal of at-
tention in graphics research and a wide range of second-
order similarity concepts have been developed. The most
prominent example is isometric shape matching [EK03,

QQ

(a) (b) (c)

Figure 2: Rigidly transformed regions can be found by searching
for point correspondences with similar transformations. The corre-
spondences in (b) have a similar transformation and belong to the
same rigidly transformed region, in contrast to the correspondences
in (a). The two fish in (c) are related by a non-rigid transform,
whereas each pair of matching subregions is transformed rigidly.

ASP∗05, MS05, BBK06, PBB∗13] which uses the distortion
of geodesic distances on a shape’s surface as similarity cri-
terion. It allows all transformation as long as the pairwise
geodesic distances of the query points are preserved in the
matched region. In contrast to our method, large deforma-
tions over small areas, such as joints, are considered simi-
lar transformations (cf Figure 11c). Our similarity measure
requires locally approximately rigid transformations but al-
lows their gradual change over the region. This not only pre-
serves local geometric detail, but can also handle large-scale
shape changes, such as strong bending of thick objects over
a large region, or a gradual change of scale, both of which
are not considered similar by an isometric approach. Further-
more, our method does not require connected shape bound-
aries, which fits well to our use case of line-drawings or edge
images, where we often have to deal with disjoint curves.

A different concept of second-order similarity was pro-
posed by Zhang et al. [ZSCO∗08], who computes a defor-
mation energy to align the points of a query region with
their matched counterparts. Due to its exponential complex-
ity, only a very sparse set of points can be used and the ge-
ometry between them is ignored. Chang et al. [CZ08] match
two articulated shapes by partitioning them into a small
sets of subregions that are related by rigid transformations
and optimize pairwise correspondences between the subre-
gions. Smooth non-rigid transformations like bending can-
not be handled. Berner et al. [BWM∗11] infer a second-order
similarity from a given set of shapes by identifying a low-
dimensional subspace in the full space of all possible trans-
formations between shape regions. To span the subspace,
a large amount of similar shapes are required but usually
not available for our use cases. Furthermore, rotations are
not well presented in their space of transformations, which
causes related non-rigid transformations, such as bending, to
be handled poorly.

Various methods [GCO06, MGP06, MGP07] define
second-order similarity based on transformation parameter
similarity. However, the first two methods [GCO06,MGP06]
can only match regions related by a rigid transformation,
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while the third method [MGP06] is only suited for sym-
metrizing a single model and cannot be employed to match
two different regions. Our approach can be seen as a gener-
alization of these methods as our similarity measure is also
based on transformation parameters. An in-depth description
of this concept is given in Section 3.

In regard to the input of our method, i.e., a set of contour
segments, several related methods were proposed in the last
years. In Ferrari et al. [FJS10], pairs of adjacent segments
are identified that potentially match parts of the query object
contours. Each pair votes for a object position and scale and
pairs that agree on their votes are used to build the outline of
the matching objects. Lu et al. [LLA∗09] use a similar vot-
ing scheme to capture the close-to-rigid relations between
contour segments. Srinivasan et al. [SZS10] use shape his-
tograms to encode the relations between contour segments
similar to shape contexts. Ma et al. [ML11] matches small
partial contour segments first and groups those with simi-
lar relative position and orientation to assemble the full con-
tours. These four methods can handle small variations of the
matching contours but fail for strong non-rigid transforms
such as bending.

Several methods [CR03, ZD06, MZT∗13] have been pro-
posed to find a non-rigid matching between two sets of 2D
points by iteratively optimizing correspondences and trans-
formation. Chui et al. [CR03] use thin-plate splines to model
the transformation and a soft-assign method [RCB97] to
compute correspondences. Zheng et al. [ZD06] employ the
thin-plate spline model as well, but use a local descriptor
based on a points neighborhood structure to compute cor-
respondences. Ma et al. [MZT∗13] use an estimator that is
robust to outliers to estimate a transformation modeled as a
function lying in a reproducing kernel Hilbert space. Shape
contexts are used to compute correspondences. These meth-
ods work well if there is an unambiguous (i.e. single best) so-
lution for the matching problem. However, if there are mul-
tiple sets of matching points, their iterative optimization is
prone to get stuck in local minima. See Section 7 for a com-
parison of the most recent method [MZT∗13] with ours.

Second-order similarity has also been explored for region
matching in the context of raster images. These methods not
only consider geometric similarity as the aforementioned
works, but also photometric similarity measures. Patch-
Match [BSFG09] and its generalization [BSGF10] search
for similar patches in an image and grow regions around
the best matches. Only matches with similar transforma-
tion are used which limits this approach to rigid matching.
Leordeanu et al. [LH05] use thin-plate spline bending en-
ergy as as a measure of second-order similarity. In a differ-
ent approach, Cheng et al. [CZM∗10] identify matches for
a semi-automatically generated query region. The method
performs well even in the presence of strong occlusion and
significant background clutter. The two last methods are not
applicable for strongly non-rigid transformations. Yücer et

al. [YJHS12] define a mapping between image regions as
a deformation with bounded biharmonic weights [JBPS11]
that are modified to adapt to the local image content. How-
ever, their region alignment approach is limited to regions
that have a single best match.

Although they are used for raster images, the follow-
ing two methods by Cho et al. [CLL09] and HaCohen et
al. [HSGL11] are conceptually the most comparable works
to our method. These are also part of the comparisons with
our method in Section 7. Cho et al. [CLL09] starts by gen-
erating an initial set of local point correspondences in an
image. These are then hierarchically clustered using a dis-
similarity measure between pairs of matches that is based on
the difference between their corresponding transforms. Their
difference measure is unsuitable for large non-rigid defor-
mations, however, and does not contain a notion of spatial
neighborhood between correspondences. Thus, smoothness
of the transformations over the query region cannot be prop-
erly defined and either local noise or only partially matched
regions are the consequence. We will show in Section 3 that
a concept of spatial neighborhood in the similarity measure
is fundamental to the solution of this problem.

HaCohen et al. [HSGL11] start with a query image
and target image and use the Generalized PatchMatch
method [BSGF10] to find the best match for a patch around
each pixel in the query image. Matched patches are then ag-
gregated to consistent regions, where neighboring patches
are required to have highly similar transforms. Since the
Generalized PatchMatch method finds only a single best
match for each pixel and does not exploit second-order simi-
larities, the method favors local patch similarity over finding
large matching region. For scenes with repeating elements,
i.e., when there is not a single best match for each local
patch, this causes problems.

3. Transformation Parameter Similarity

Our concept of similarity is based on ‘smoothly’ chang-
ing transformation parameters of first-order point correspon-
dences over a region. In the discourse of this similarity
concept we introduce three central terms: a transformation
space is the space of rigid transformation parameters, first-
order correspondences connect two points with local neigh-
borhoods related by a rigid transformation and a transforma-
tion function models the non-rigid transformation between
two shape regions. In the following, we give formal defini-
tions of these terms.

The transformation space is the space of rigid transfor-
mation parameters. In our method, we focus on 2D simi-
larity transformations S(tx, ty,s,r), parametrized by x- and
y-translation tx and ty, uniform scaling s and rotation r, re-
sulting in a four-dimensional transformation space with co-
ordinates τ = (tx, ty,s,r) ∈ T. Since the scaling of the indi-
vidual dimensions is arbitrary (e.g. it depends on using ra-
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Figure 3: Regions with high transformation parameter similarity are related by a smoothly changing transformation function. The green
region on the left is related to the red region by the transformation function shown on the right. Each of the four transformation parameters of
the function is shown in a separate plot. Note that there are no discontinuities or spikes in the gradient magnitude of the parameter functions.

dians or degrees for the rotation), we normalize the dimen-
sions of the transformation space. The following normaliza-
tion factor is used throughout our method (unless noted oth-
erwise): (0.03b,0.03b,1.25,45◦), where b is the length of
the bounding box diagonal of the input shape. A translation
by 3% of the bounding box diagonal is equivalent to a scal-
ing by a factor of 1.25 and a rotation by 45◦. Given param-
eters (tx, ty,s,r), the transformation of a point p is defined
as S(tx, ty,s,r) ∗ p = SL(tx, ty) ∗ SS(s) ∗ SR(r) ∗ p, where SL,
SS and SR are translation, scaling and rotation operations,
respectively, and ∗ applies an operation to a point p.

A first-order correspondence (p,τ) matches two points in
a vector image based on their local neighborhood, e.g. us-
ing a local descriptor. It is defined by the position of the first
point p and the transformation parameters τ relating the local
neighborhoods of the two points: (p,τ) = (px, py, tx, ty,s,r).
The second point can be found as S(τ)∗ p. The set of all first-
order correspondences of a shape is denoted C ⊂ R2 ×T.
Note that in the continous case, there are infinitely many
first-order correspondences for any given shape. Due to the
necessary discretization of the problem and associated nu-
merical issues, only a finite noisy subset of C can be found.

We model the transformation relating two shape regions
Q,T⊂ R2 with a transformation function:

f : Q→ T (1)

The transformed region is T= {S( f (p))∗ p | p∈Q}. A rigid
transformation is described by a constant function, while
all other functions describe non-rigid transformations. Each
subset of correspondences T ⊂ C that contains one corre-
spondence for each point in the region Q defines a transfor-
mation function that relates two shape regions with points
having similar local neighborhoods. Figure 3 shows a trans-
formation function relating the green region to the red re-
gion, i.e. transforming each point p in the green region with
the transformation given by f (p) yields the red region. The
four dimensions of the function values are shown separately
on the right. Since the red region is a smoothly bent ver-
sion of the green region, the function does not exhibit dis-
continuities and the gradient magnitudes of its individual

dimensions vary smoothly. Intuitively, transformation func-
tions with low gradient magnitude in all parameters ensure
that the transformed region is not distorted beyond recog-
nition and retains local geometric detail, but still allow for
strong non-rigid deformations over the whole region.

The Jacobian of the transformation function combines the
gradients of the individual transformation parameters. The
Frobenius norm of the Jacobian describes the magnitude of
the combined gradients. More specifically, it is the norm of
the vector of gradient magnitudes:

‖J f ‖F =
∥∥(‖∇ fτx‖,‖∇ fτy‖,‖∇ fτs‖,‖∇ fτr‖

)∥∥ (2)

where J f is the Jacobian of f , ‖ · ‖F is the Frobenius norm
and ∇ f∗ are the gradients of the individual transformation
parameters of S.

We define the transformation parameter similarity be-
tween two regions Q and T related by a transformation func-
tion f as the harmonic mean of the Jacobian magnitude
‖J f ‖F over the entire function. The harmonic mean is used
because a single large Jacobian magnitude in the transfor-
mation function is percieved as a strong discontinuity in the
target region. Such a region is considered less similar than a
region with large areas of average Jacobian magnitude.

Transformation functions that relate two shape regions are
subsets of C. However, C may contain multiple transforma-
tion functions, as well as correspondences that are not part
of any transformation function. The goal of our method is to
find subsets T ⊂C that approximate functions with the prop-
erties described above. Each subset then describes a pair of
regions with high transformation parameter similarity.

4. Algorithm Overview

The input to our algorithm is a model of 2D shapes defined
by contour segments. Such segments can be defined as poly-
lines, obtained for example by vectorizing the output of an
edge detector like Canny. Broken contours are not overly
problematic here. However, the polyline geometry should
not be too noisy (if so it can be gracefully smoothed) as the
local curvature is used by our local shape descriptor. The
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Figure 4: The three main steps of our method. From left to right: 1) First-order correspondences C (blue dots) are computed. To avoid clutter,
only some correspondences are shown with connecting lines. 2) Refined first-order correspondences C′ (red dots) are computed by aggregating
nearby unrefined correspondences. 3) Transformation functions fT are found in transformation space, corresponding target regions T that are
similar to the query region Q.

second input is a user-provided 2D query region, defined by
outlining or brushing on the canvas. The goal is to find all
2D shape regions that have a high similarity to the query re-
gion. Our method proceeds in three steps (cf. Figure 4 and
Alogrithm 1).

In the first step, the first-order correspondences are com-
puted using a local shape descriptor. We use a variant of
Shape Contexts [BMP02], but any descriptor invariant to
similarity transforms can be used as long as the resulting cor-
respondences are reasonably accurate. Since this first step is
interchangeable and just a minor contribution, we refer to
the additional material for details.

In practice only a noisy subset of C denoted C is found
in the first step. We could find smooth transformation func-
tions directly on this set of correspondences, but it is usu-
ally prohibitively large and may not cover all areas of the
query region, degrading the stability of our method. To im-
prove stability, we introduce an intermediate step that has
three roles: it reduces the number of first-order correspon-
dences to decrease computation time, generates correspon-
dences that cover the query region more evenly and reduces
noise. In this step, the query region is sampled regularly with
a fixed number of points. For each of these points, we find
stable correspondences by aggregating nearby noisy corre-
spondences of C using the method of Mitra et al. [MGP06],
as described in Section 5. The result is a smaller set of first-
order correspondences C′ that contains less noise and covers
the query region more evenly.

In the final step, we search for sets of correspondences
T ⊂ C′ that are smooth transformation functions (cf. Sec-
tion 3). We use linkage clustering with weights based on ap-
proximate Jacobian magnitudes to identify these functions,
as will be explained in Section 6. Each function corresponds
to a region similar to the query region.

Algorithm 1: TPS Matching
Input : query region Q,

contour segments {Pj}
Output: sets of first-order correspondences {Tk}N

k=1
describing regions with similarities {TPSk}N

k=1

1 compute first-order correspondences C on contour
segments {Pj} using local shape descriptors

2 refine first-order correspondences C to get C′ using
Algorithm 2

3 the sets of correspondences {Tk} and their similarities
{TPSk} are found as smooth transformation functions in
C′ using Algorithm 3

5. Improving First-Order Correspondences

The first-order correspondences found by the local shape
descriptors are usually noisy and may not cover the query
region evenly. This makes finding smooth transformation
functions more difficult. Consequently, we refine the orig-
inal set C of first-order correspondences into a new set C′
having fewer elements with less noise that are evenly spread
over the query region.

To create the new set of correspondences, we first deter-
mine the locations q of the refined correspondences (q,τ).
The locations q are constructed by placing a fixed amount
of points (∼50 in our examples) regularly in the bounding
box of the query region and only the points inside the query
region are kept. We call these points query points.

Next, the transformation parameters τ for each query point
are found. The method of Mitra et al. [MGP06] finds rigid
region matches in a shape given a set of noisy first-order
correspondences. We apply this method once for each query
point q, using only the noisy correspondences near q as in-
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put, as we will explain in detail below. This effectively gives
the rigid matches of the local query point neighborhood. The
rigid transformation parameter τ of each match is used to
construct a refined correspondence (q,τ).

Given a query point q, noisy correspondences (pi,τ
′
i) in

the set C are weighted by the following function around q:

wi = G(||pi−q||) h′i
1
di

(3)

where G is a Gaussian with a radius rs defined by the user.
The Gaussian can be thought of as a smoothing kernel. In-
creasing the radius gives smoother results, since each re-
fined first-order correspondence is based on a larger set of
noisy first-order correspondences. We use a radius of 0.1b
in all our examples, where b is the length of the bounding
box diagonal of the input shape. Each noisy correspondence
might have a confidence value h′i . If no confidence values are
available, a factor of one is used instead. di is the density of
the first-order correspondences in C computed at each point
pi. This factor removes the bias that would otherwise be in-
troduced due to different densities of first-order correspon-
dences over the shape. A straightforward way to compute
the density at a point pi is to center G at pi and accumulate
G(||pi− p j||) for all points p j ∈ C with i 6= j.

With the weighted noisy correspondences near the query
point q as input, we now proceed according to the method of
Mitra et al. [MGP06]. Noisy correspondences with a weight
smaller than one percent of the maximum weight are dis-
carded. The transformation parameters τ

′
i of the noisy cor-

respondences weighted by wi form a density distribution in
transformation space T. The dominant modes τ of this dis-
tribution correspond to transforms used by many noisy cor-
respondences. Consequently, if such transforms are applied
to the query point, it will be mapped to a neighborhood simi-
lar to the query region. Because no a-priori knowledge about
the number of dominant modes is available, mean-shift clus-
tering [CM02] with a kernel radius of one, due to the trans-
formation space normalization, is used to find them.

The refined correspondences are the query points com-
bined with each of their dominant modes:

C′ = {(q,τ) j} (4)

where the index j runs over the dominant modes of all query
points. Additionally, we use the magnitude h of the domi-
nant modes as a confidence value for the refined correspon-
dences. A higher magnitude means more noisy correspon-
dences agree on the transformation parameters. The number
of refined correspondences is the total number of dominant
modes of all query points. The number of dominant modes
for each query point depends on the complexity of the shape,
as well as on the radius of the Gaussian in Equation 3. See
Algorithm 2 for a summary of the refinement step.

Algorithm 2: Refine First-order Correspondences
Input : query region Q,

noisy first-order correspondences C
Output: refined first-order correspondences C′

1 create query points Q = {qk}M
k=1 by sampling the query

region Q in a regular grid
2 for qk ∈ Q do
3 compute weights {wi}

|C|
i=1 using Equation 3

4 compute set of transformation parameters {τ}k as
the dominant modes of the noisy correspondences C
weighted by {wi} in transformation space T

5 end
6 the refined correspondences C′ are the pairs {(q,τ) j} of

all query points

6. Region Matching

We now proceed to the main step of our method: finding
shape regions that have high transformation parameter sim-
ilarity to the query region. A similar region is related to
the query region by a transformation function with low Ja-
cobian magnitude. Each refined first-order correspondence
(q,τ) can be seen as a sample of a transformation function,
where q is the function argument and τ the value. The set C′
of refined first-order correspondences may contain samples
for many transformation functions, as well as samples that
are not part of any function. The goal in the final step is to
identify subsets of first-order correspondences that approxi-
mate transformation functions with low Jacobian magnitude
(cf. the additional material for an example). Each subset con-
tains correspondences between the query region and a region
similar to the query region.

To find these subsets, we first define a second-order sim-
ilarity for each pair of first-order correspondences. The
second-order similarity between two first-order correspon-
dences (q,τ)i and (q,τ) j is based on a lower bound for the
Jacobian magnitude that any function passing through both
correspondences must have. A lower bound for the gradi-
ent magnitudes of the individual transformation parameters
τ = (tx, ty,s,r) is the vector of difference quotients:

ai j =
(tx, ty,s,r)i− (tx, ty,s,r) j

‖qi−q j‖
(5)

Since the Jacobian magnitude is the norm of the vector of
gradient magnitudes (cf. Equation 2), the norm of ai j is
a lower bound for the Jacobian magnitude. We define the
second-order similarity as the Gaussian of this lower bound:

ai j = G(‖ai j‖) = G
(
‖τi− τ j‖
‖qi−q j‖

)
(6)

where ai j is the second-order similarity between correspon-
dence i and correspondence j. Note that the transformation
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Q

T

Figure 5: Effects of an overly large neighborhood radius. Three
fish are related by the correspondences shown on the left. The tail
of the lower fish has similar transformation parameters as the head
of fish in the middle. An overly large neighborhood radius would al-
low our method to merge correspondences from distant scene parts,
while the center correspondences (green) are ignored. This causes
an incorrect matching, as shown on the right.

parameters τ are normalized, as explained in Section 3, oth-
erwise the difference quotient would depend on the scale of
the individual parameters. The radius of the Gaussian is set
to one. Changing the radius would have the same effect as
changing the normalization factors.

Given the second-order similarity for all pairs of corre-
spondences, we find subsets of correspondences that approx-
imate functions with low Jacobian magnitude. Hierarchical
average linkage clustering with linkage weights based on
the second-order similarity is used to find these subsets. We
start with each correspondence in a separate set and iter-
atively merge neighboring sets having elements with high
linkage weights. The linkage weights between correspon-
dences (q,τ)i and (q,τ) j are defined as:

li j = ai j hih jni j (7)

where h are confidence values for correspondences i and j,
effectively favoring sets of correspondences with high confi-
dence. The factor ni j is a neighborhood weight that restricts
merging operations to neighboring sets of correspondences:

ni j = G(‖qi−q j‖) (8)

G is a Gaussian with a radius rn that controls the trade-off be-
tween the proximity of sets and their second-order similarity.
A low radius will only allow sets of correspondences to be
merged that have adjacent query points. This precludes find-
ing shape regions with occlusions or regions missing corre-
spondences due to noise or bad matching. Setting the radius
too high might result in correspondences from distant parts
of the query region being merged, ignoring the correspon-
dences in between, as shown in Figure 5. Unless noted oth-
erwise, we use a value of 0.003b in all our scenes, where b is
the length of the bounding box diagonal of the input shape.

In each iteration, the two sets of correspondences A and
B ⊂ C′ with the highest average of the linkage weights be-
tween their elements are merged. Each set contains samples
of a transformation function that has low Jacobian magni-
tude when reconstructed from the samples. In some cases,

such as branching structures that are matched to a non-
branching query region, two sets of correspondences may
get merged that have a large overlap in their query points.
For example, two branches and the trunk of a tree may get
matched to a query region that contains only a trunk and
a single branch, if the trunk splits smoothly into the two
branches. To pick only a single branch, we introduce a factor
that encourages regions that contain exactly one correspon-
dence of each query point q:

dAB = 2Ns
AB−Nd

AB (9)

where Nd
AB is the number of query points that are present

in the correspondences of both sets and Ns
AB the number of

query points present in only one of the sets. Two sets having
a large overlap in the domain of the transformation func-
tion have a low fold-over factor. The final linkage weight
between two sets of correspondences A and B is defined as:

lAB =
∑(i, j)AB li jni j

∑(i, j)AB ni j
dAB (10)

where (i, j)AB = {(i, j) | (q,τ)i ∈ A (q,τ) j ∈ B}. The al-
gorithm stops merging the sets with highest linkage weight
when this weight falls below a threshold. In our implemen-
tation we use one percent of the largest linkage weight.

Each resulting set T ⊂ C′ defines a transformation func-
tion fT with low Jacobian magnitude that describes the trans-
formation between the query region Q and a target region T.
Finally, the transformation parameter similarity of the two
shape regions Q and T is approximated by the weighted har-
monic mean (cf. Section 3) of the linkage weights between
all pairs of correspondences in T :

TPSQT = |T |

(
∑(i, j)T l−1

i j ni j

∑(i, j)T ni j

)−1

(11)

where (i, j)T are the indices of the pairs of correspondences.
See Algorithm 3 for a summary of the region matching step.

7. Results and Discussion

We implemented the described method in Matlab and tested
it on a PC with 16 GB memory and a 3.4 GHz quad-core
CPU. Key parts of the correspondence refinement step and
the clustering step were implemented in CUDA or C++. The
first step (cf. Section 4) creates first-order correspondences
using local shape descriptors (cf. additional material). This
step is computed once for each shape in a preprocess and
is independent of the query region. Steps two and three are
computed after a user selects a query region and depend
mainly on the number of query points (usually 30−50 in our
examples). The linkage clustering described in Section 6 has
a worst-case complexity of O(N3) in the number of refined
first-order correspondences, but the average case has much
lower complexity. Additionally, we discard pairs of refined
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a

b

c

d

e

8.30 s (3.98 s)32.64 s pre-process 5.07 s (2.89 s)

5.15 s (3.07 s)57.72 s pre-process 0.94 s (0.67 s)

0.83 s (0.70 s)39.14 s pre-process 0.44 s (0.37 s)

10.43 s (9.77 s)95.14 s pre-process

2.89 s (2.68 s)42.67 s pre-process

Figure 6: Results of our method on five test shapes. The leftmost image shows the input shape. The next image shows one operation where
region matches (red) are found for a user-defined query region (green). The texture from the query region is transferred to each such target
region, as shown in the following image. The final result is shown in the last image with added background to give an impression of how an
artist-created result might look like when using our method. Timings are provided below each image (see Section 7 for details).

first-order correspondences with very low confidence (below
one percent of the maximum confidence) before clustering.
The computationally most intensive case for our method is a
shape where all pairs of points have the same similarity, e.g.,
a circle. Since the stopping criterion of the clustering step
would never be met, the clustering algorithm would need run
through N iterations to merge all correspondences, searching
for the best among (N− k)2 correspondence pairs in step k.

The method is demonstrated on several vector images
shown in Figures 6 and 7. The images are created by au-
tomatic contour finding from RGB-images with subsequent
manual noise removal (h), manual drawing (c and i) or a
combination of both (a,b,d,e,f,g). In each example, we per-
form 1-3 operations. An operation includes finding all red
target regions matching the green query region with a TPS
above a given threshold (which is selected interactively with
a slider after the region matching step has finished) and then
transferring the texture shown in the query region to each tar-

get region to visualize matching accuracy. Each texture has
an alpha-channel and is added on top of the existing textures.
The background is only included to give a better impression
of how the final result of an artist-created image using our
method might look like. The only input to our region match-
ing method are the shape contours in the leftmost column.

In Figure 1, the small snake is related to the big snake
by a transformation function with changing scale, angle and
translation parameters. The skin and the pattern of the snake
are transferred in two operations. Figures 6a and 7g show
similar images with a significant amount of clutter. Never-
theless, it is possible to detect small objects like the leaf in
Figure 7h or the small clovers in Figure 6a. In Figure 6b, all
fish in the image have different proportions and additionally,
some are bent. The contours of some fish have large gaps due
to occluding sea weed. For the sea weed we use query points
on a stroke instead of a region. The texture is transferred by
extrapolating the texture coordinates of the matched (red)
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h

i

9.45 s (8.77 s)

3.03 s (1.85 s) 2.71 s (1.68 s) 1.11 s (0.92 s)

10.27 s (9.33 s) 11.19 s (10.99 s)85.67 s pre-process

29.64 s pre-process

8.08 s (5.58 s)601.13 s pre-process

g

f

4.19 s (3.51 s)55.14 s pre-process

Figure 7: Addtional results. The leftmost image shows the input shape. The next image shows one operation where region matches (red) are
found for a user-defined query region (green). The texture from the query region is transferred to each such target region, as shown in the
following image. The final result is shown in the last image with added background to give an impression of how an artist-created result might
look like when using our method. Timings are provided below each image (see Section 7 for details).

strokes. Figure 6c shows branching corals. Due to the thin
structure of the corals, strokes are used here instead of re-
gions. In 6d, giraffes in different poses are matched by our
method. Figure 6e shows man-made objects with different
amounts of bending (also note that the hat of the left harlekin
is mirrored), while in 7f two snakes with a fine skin pattern
are matched. In Figure 7g, eight different types of butterflies
are matched in an image with a large amount of background
clutter. The scale difference between butterflies has a fac-
tor of up to ten. Finally, Figure 7i shows a stylized sun with
non-rigidly transformed rays being constructed in three op-
erations (excluding the solid-colored background).

Detailed timings for each operation are shown in Fig-
ures 6 and 7 below the image of the corresponding opera-
tion. The time in parenthesis is for the refinement step, the
time outside the parenthesis for the entire operation. Times
for the first step of our method, computed as a pre-process,
are shown below the input image. The largest factor for the
computational demand is the number of refined correspon-

dences, which mainly depend on scene clutter. For this rea-
son, the operations in the flowers scene are computationally
most expensive, followed by the butterflies and the clovers
scene. In the giraffes example we used more query points
than in the other examples to better capture the thin legs,
making the operation more expensive.

Although the refinement step improves first-order corre-
spondences considerably, the inlier percentage is still rel-
atively small. Table 1 shows the inlier percentage for the
first operation in all example images. In Figure 8 we show
the distribution of refined first-order correspondences in the
snakes image (Figure 1) in transformation space. The re-
gion matching step correctly finds the matching snake in
the presence of a significant amount of outliers. Note how
the matched region consists of high-confidence as well as
low-confidence correspondences, precluding simple thresh-
olding. See the supplementary material for additional and
more detailed visualizations.

We compare our method to the L2-Estimator
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(b) ACC(a) L2E (c) NRDC (d) Our method (e) Ground Truth

36.22 s57.47 s 35.01 s 5.15 s

35.11 s26.30 s 5.48 s 2.89 s

34.99 s98.05 s

37.49 s97.60 s 3.68 s 10.43 s

37.51 s40.85 s 1.33 s 3.03 s

33.95 s56.37 s 7.67 s 4.19 s

6.08 s 6.44 s

(no matches found)

Figure 9: Comparison to the L2-Estimator (L2E) [MZT∗13], Agglomerative Correspondence Clustering (ACC) [CLL09] and the Non-Rigid
Dense Correspondence (NRDC) [HSGL11] methods. The red target regions are matches found for the green source region. A texture is trans-
ferred from source to target regions to visualize the matching accuracy. The input to the individual methods is shown as inset. A ground truth
created by manually placing key correspondences is provided as reference. Note that L2E has problems with multiple matching regions, ACC
has problems with regions related by strongly non-rigid transformations and NRDC has problem with occlusions, repeating patterns and re-
gions without detailed texture. Our method can handle multiple matches, occlusions, strong non-rigid transformations and repeating patterns
making it possible to correctly detect all similar regions.

(L2E) [MZT∗13] Agglomerative Correspondence Cluster-
ing (ACC) [CLL09] and the Non-Rigid Dense Correspon-
dence (NRDC) method [HSGL11], three state-of-the-art
methods for non-rigid region matching. For all three meth-
ods, we optimize the parameters for each image separately
to provide the best matching. The correspondences found
by these methods may not cover the entire query region,
making it necessary to extrapolate the missing parts to es-
tablish a dense correspondence. For each image, we choose
either Locally Linear Embedding [RS00], thin-plate splines
or a Gaussian-weighted average of the transformation
parameters for the extrapolation, whichever gives the best
results. In our method, the correspondence refinement step

makes a separate extrapolation unnecessary. To validate the
results, we use a ground truth generated by manually placing
a sparse set of correspondences at key locations of the shape
(cf. Figure 9d). Since the L2E method works on point sets,
we use evenly-spaced samples on the contour segments as
input. The ACC and NRDC methods both require images
as input. We transfer the texture in the query region to all
target regions using the ground truth and use the resulting
image as input. The area inside the query region is used as
source image and the area outside the query region as target
image. We also tried using rasterized contours as input, but
using textures gave better results for all scenes. The input
for each method is shown in the insets of Figure 9.
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Algorithm 3: Find Smooth Transform. Functions in C′

Input : refined first-order correspondences C′
Output: sets of first-order correspondences {Tk}N

k=1
describing regions with similarities {TPSk}N

k=1

1 initialize sets of correspondences {Tk} as
{Tk = {(q,τ)k ∈ C′} | k = 1 . . . |C′|}

2 compute linkage weights between all pairs (Ti,T j)
using Equation 10

3 while highest linkage weight is above threshold do
4 merge correspondence sets Ti∗ and T j∗ having the

highest linkage weight:
{Tk}=

(
{Tk}∪{Ti∗ ∪T j∗}

)
\{Ti∗ ,T j∗}

5 update linkage weights for the merged
correspondence set

6 end
7 compute similarities {TPSk} for each set in {Tk} using

Equation 11

Result corr. count inlier % weighted inlier %

1 2551 2.47 4.18
6a 6648 5.91 17.95
6b 7810 4.34 19.65
6c 278 7.91 7.39
6d 5664 2.31 23.98
6e 2028 5.42 16.60
7f 2999 1.87 4.62
7g 5668 12.35 29.69
7h 1911 55.78 88.17
7i 4005 2.42 14.02

Table 1: Inlier percentage for the first operation in all exam-
ples shown in Figures 1, 6 and 7. Columns from left to right:
total number of refined first-order correspondences, percent-
age of inliers thereof, percentage of inliers weighted by their
confidence (see Section 5).

The L2E method alternates between improving the trans-
formation and the correspondence between the source and
target point sets. The transformation is modeled as a func-
tion restricted to lie in a specific reproducing kernel Hilbert
space and is estimated using their robust L2 estimator. Corre-
spondences are updated in each iteration using the Hungar-
ian method to connect points with the most similar shape
contexts. This method is designed for two point sets that
have a single best match and exhibits two main problems
in the presence of multiple best matches. First and most im-
portantly, the method might get stuck in a local minimum if
there are multiple basins of attraction, since one subset of the
points might be initialized in one basin and a second subset
in a different basin. The result of this behavior can be ob-
served in rows 1, 5 and 6 of Figure 9a. Note that we only
show one matched region in the first and last row to avoid
clutter, since the other regions are distributed over a larger
number of attractors resulting in an even larger distortion. In
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Figure 8: Refined first-order correspondences of the snakes image
(Figure 1) in transformation space. Only the rotation and transla-
tion dimensions are shown. Dark correspondences have high con-
fidence, light correspondences have low confidence. Inliers corre-
sponding to the red target region are encircled in red.

the last row we additionally show the correspondences found
for the second matched region as red lines. The second prob-
lem is that making the shape contexts scale and translation
invariant is not trivial anymore if the matching regions are
not centered in their point set. The authors use the average
distance of the point set to the shape context center as scale
and the direction of the shape context center to the point set
center of mass as direction of a shape context. These approx-
imations are only valid if both the source and target regions
have approximately the same scale and are centered in their
point sets. Using the contour normal and curvature informa-
tion, as we do, is not possible, since the source points are
transformed in each iteration and the contour information is
invalidated. Badly rotated shape contexts result in the mis-
matched head of the harlekin in row 2 of Figure 9a.

The ACC method clusters first-order correspondences
based on the absolute difference between their transforma-
tions. This means that sparse correspondences on a strongly
non-rigid region, like on the ‘neck’ of the harlekin or the
body of the snake in Figure 9b, are considered dissimilar
and the matched region breaks apart. Additionally, the cor-
respondences found by the method are sparse and only cover
part of the query region. In contrast, our method uses the
gradient of transformation parameters instead of the abso-
lute difference, making it possible to correctly identify re-
gions defined by a sparse set of first-order correspondences
(cf. Figure 9c).

The NRDC method constructs first-order correspon-
dences by finding a single best match for each 12x12 pixel
patch in an image using Generalized Patch Match [BSGF10]
and then grows regions by merging adjacent correspon-
dences based on the absolute difference of their transforma-
tions. Since the correspondences densely cover the query re-
gion, using the absolute difference does not create the same
problems as in the ACC method. However, only merging
adjacent correspondences precludes the handling of occlu-
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(a) (b)

Figure 10: Projection error used with transformations having
many free parameters (note that this figure is only meant to illus-
trate a potential problem, we did not implement 3D transformations
or non-uniform scaling). In both examples, the projection error be-
tween the two correspondences shown as blue dotted lines would be
zero, even though their transformation is clearly different. In (a) the
green and red strokes at the center axis of the two extruded shapes
would be matched even though the second shape has a large discon-
tinuity in its rotation around the center axis and in (b) the strokes
inside the fish would be matched, even though the bottom fish has a
large discontinuity in its vertical scaling.

sions, as shown in Figure 9c, first row. Also, the single best
match for each image patch is found based on local infor-
mation only. Each element of a repeating pattern, such as
the pattern on the snake skin (cf. Figure 9c, third and fourth
row) is locally similar to all other elements, causing mis-
matches that can only be resolved when using global infor-
mation, i.e. the position of the pattern element on the snake.
Our method finds several matches for each query point and
chooses a subset of these matches based on global informa-
tion, correctly matching regions with repeating patterns. Fi-
nally, since NRDC densely computes correspondences for
each pixel based on a relatively small neighborhood, it only
works on regions having detailed texture. Less detailed tex-
tures (see bottom row of Figure 9c) can not be handled.

Relation to the Projection Error The projection error is a
standard method of measuring second-order similarity. Our
method can be adapted to use the projection error by chang-
ing the Jacobian magnitude in Equation 5 to the projection
error as defined in Equation 1 of Cho et al. [CLL09] or Equa-
tion 1 of HaCohen et al. [HSGL11]. However, we argue that
the TPS has two main advantages over the projection error
when computing the similarity between two first-order cor-
respondences:

First, the projection error is computed in the 2D space
of positions, whereas transformations usually have a much
larger number of free parameters (four in our case), and in-
formation is necessarily lost in the projection of the trans-
formation parameters into the 2D space. Consequently, the
distance in the 2D space does not always correlate with the
distance of the transformation parameters. Figure 12a shows
two snakes with clearly different scales, but the second-order
similarity based on projection error does not have enough

A

B

C

C

D

D

A B

(a)

(b)

(c)

Figure 11: Limitations of our method. Example (a) shows the re-
sult of matching two shape regions with partially dissimilar geome-
try, as shown in the insets. The matches in the dissimilar parts are
not accurate, but similar parts of the shape are still matched cor-
rectly. In example (b), the stems of the flowers do not have any dis-
tinctive features in common. Consequently, no first-order correspon-
dences are found for the stems and our method can only match the
flower blossom and pot. Example (c) shows two regions that are re-
lated by a discontinuous transformation function. Our method only
matches its continuous subsets.

information to distinguish between the two scales and incor-
rectly merges them. This problem gets worse as the number
of transformation parameters increases. For example, when
using non-uniform scaling or when extending the method to
3D input, completely different transformations might have
zero projection error. We illustrate this problem in Figure 10.
In contrast, since our method directly compares the trans-
formation parameters, no information is lost and the scale
difference in Figure 12b is correctly detected.

Second, TPS is gradient-based, whereas the projection er-
ror uses an absolute distance, making it less suitable to han-
dle distributions of query points with varying densities. The
projection error gets smaller as the density of correspon-
dences in a region increases, even though the transforma-
tion of the region remains the same. Figure 12c-f shows two
butterflies that are related by a non-rigid transformation. To
accurately match the small feelers, they have to be sampled
more densely. Consequently the projection error in the feel-
ers is smaller than in the remainder of the body, causing ei-
ther incorrectly merged correspondences in the feelers due
to a small projection error (Figure 12d), or failure to merge
correspondences in the body due to a large projection error
(Figure 12e). This depends on the value of the normaliza-
tion factor described in Section 3. The TPS is independent
of sampling density, as it uses the gradient over the query
region and can find a good match for both feelers and body
using the standard value of the normalization factor (see Fig-
ure 12f).

Possible Extension to 3D Geometry One interesting direc-
tion for future work is the extension of our method to 3D
geometry. In this case, to find first-order correspondences,
we would need 3D surface descriptors such as Spin Im-
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(a) (b) (c) (d) (e) (f)

Figure 12: Two problems when using a second-order similarity based on the projection error. In (a) and (b), a snake is matched to two snakes
having different scales. The similarity based on the projection error (a) fails to separate the two snakes, whereas our similarity measure (b) can
correctly separate the snakes based on the scaling parameter of their transformations. The butterfly in (c) is matched non-rigidly to the butterfly
shown in (d)-(f). The similarity based on the projection error either incorrectly merges correspondences on the feelers (d) or fails to match the
body (e), depending on parmeter settings. Our method (f) can correctly match body and feelers using standard parameters.

ages [Joh97], Shape-DNA [RWP06] or Heat Kernel Signa-
tures [SOG09] instead of our 2D descriptors. Using 3D de-
scriptors might reduce false correspondences, since the lo-
cal neighborhood of a point on a 3D surface is typically
more discriminative than the local neighborhood on a 2D
surface. Additionally, the transformation space T would be
higher-dimensional, but this would pose no problem, as all
employed techniques are well suited for high-dimensional
data and have a linear dependence on the number of trans-
formation parameters, both in execution time and memory
consumption. A larger number of dimension in T might even
be beneficial, since the correspondences in T are sparser, ef-
fectively reducing clutter in the transformation space. Intu-
itively, the transformation parameters should be smooth in
the 3D case as well, however this would need to be shown
empirically on a number of examples.

An interesting design choice would be the placement of
query points. Query points could be placed either in the
volume or on the surface of a 3D object. The first option
would be analogous to our current method and would treat
3D regions as solid objects with a volume that cannot have
strong discontinuities in its transformation. The second op-
tion would treat regions as 2D hulls and not constrain their
volumes in any way, allowing for different kinds of transfor-
mations, such as a smooth and detail-preserving unfolding
of open meshes. When using the second option, we would
need to change the neighborhood weight in Equation 8 to ap-
proximate the geodesic distance on the object surface. The
differences to isometric shape matching discussed in Section
2 would also hold for a 3D extension of our method, such as
the ability of our method to handle smooth changes in scale
or more generally transformations that do not preserve pair-
wise distances between surface points.

The main challenge in implementing the volumetric ver-
sion of our method might be performance, since the number
of query points in the volume might get quite large. Another
challenge is finding good local descriptors that provide reli-
able transformation parameters.

Limitations In the remainder of this section, we will dis-
cuss limitations of our method. First, due to our definition of
similarity, our method can only match shape regions related
by a smooth transformation function. Regions like joints
have large gradients in the transformation parameters and
can therefore not be matched, as illustrated in Figure 11c.
Consequently, our method is better suited for organic shapes
or shapes that deform smoothly. Note that some of these
smooth deformations like a gradual change in scale (cf. Fig-
ure 1) cannot be handled by other popular similarity mea-
sures such as isometry (as discussed in Section 2).

Second, similar regions need to have distinctive local fea-
tures that can be matched by local descriptors. Otherwise
first-order correspondences cannot be found. A failure case
is shown in Figure 11b. The stems of the two flowers can-
not be matched correctly, because locally, all parts of the
two stems have equally similar geometry. Another reason for
missing correspondences is dissimilar geometry. Figure 11a
shows two horses with geometry that is mostly similar, ex-
cept for the neck and tail as shown in the insets. These parts
are missing first-order correspondences. In our implemen-
tation we try to infer missing correspondences from parts
that have been matched correctly, but shape geometry in the
missing parts cannot be taken into account.

8. Conclusion

We have demonstrated that partial non-rigid shape matches
can be found in 2D shapes by searching for sets of corre-
spondences with smoothly changing scaling, rotation and
translation parameters. We call the similarity measure re-
sulting from this notion ‘Transformation Parameter Similar-
ity’. Our method can match non-rigid objects that are similar
under this measure and establish a dense mapping between
pairs of matching objects, even if the regions are only given
as cluttered line segments. We have shown that this mapping
can be used to transfer a texture between two regions. Ad-
ditional operations like simultaneous deformation of similar
shapes are possible using our method and we would like to
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explore these applications in future work. Another interest-
ing future direction is to expand the definition of similarity to
include branching shapes, which are represented by branch-
ing surfaces in transformation space. This would allow tex-
turing branching structures like trees for example.
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