
Open3D: Crowd-Sourced Distributed Curation of City Models

Zhihan Lu Paul Guerrero Niloy J. Mitra Anthony Steed
University College London

Gina
> message

Responsible User
Geo Location

Edit

Ernie
> message

My Models

Edited Models

Requests

Parliament Main Building
50 Berners Street
15 Bedford Square

Parliament Main Building
1/11/2016

Westminster Abbey
31/10/2016

Roof should be steeper
(Treasury) 250 pts Bert 2/11/2016

The facade does not look ...
(St. Pauls Cathedral) 50 pts Gina 1/11/2016

Bert
> message

browse shared model & coordinate with collaborators edit model update shared model propagate edits

3 John Doe

Figure 1: We propose a system called Open3D, that enables collaborative curation of large-scale city models. Users of the system may view the model in
the browser (left), which also acts as a social hub. Editing (middle-left) is performed using a novel parametric editing approach that is efficient and intuitive.
Changes are applied back to the shared model, taking care to avoid conflicting edits (middle-right) from different users. Operations performed on one model
can be retargeted (middle-right) to multiple similar models with a small number of manual adjustments. Note that the color overlays and symbols in the
browser (left) are mockups of planned features.

Abstract

Detailed, large-scale 3D models of cities are important assets for
many applications. While creating such models is difficult and
time consuming, keeping them updated is even more challenging.
In comparison, in many domains, crowd-sourcing of data is now
an established process for expanding the scope or detail of data
sets. In this paper, we describe the initial prototype implementa-
tion of Open3D, a crowd-sourcing platform for distributed curation
of large-scale city models. We present an open architecture with
interfaces that clearly separate model storage and indexing from
viewing or editing. To support collaborative editing of extremely
large models, we propose to use a modeling and model description
paradigm that can integrate polygon-based modeling with paramet-
ric operations. We demonstrate the main concepts and prototype
through an online city model that can be synchronously edited by
multiple users, with live changes being propagated among clients.
The main implementation consists of a set of web services, which
support key functions such as model storage, locks for editing and
spatial queries; a light-weight viewer based on the Cesium library,
which runs on desktops and mobile devices; and a prototype editor,
which clients can install to edit the models.

Keywords: collaborative editing, large 3D models, shape model-
ing, procedural edits, architecture

Concepts: •Human-centered computing → Collaborative and
social computing systems and tools; •Computing methodolo-
gies→ Shape modeling;

Permission to make digital or hard copies of part or all of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. Copyrights for third-
party components of this work must be honored. For all other uses, contact
the owner/author(s). c© 2016 Copyright held by the owner/author(s).
Web3D ’16, July 22-24, 2016, Anaheim , CA, USA
ISBN: 978-1-4503-4428-9/16/07
DOI: http://dx.doi.org/10.1145/2945292.2945302

1 Introduction

Digital 3D models are used in almost all areas of design and engi-
neering from drug discovery through to architectural design opti-
mization. With the advent of new imaging technologies (e.g., ad-
vanced remote sensing systems and consumer 3D cameras), we
can now capture models that are both deep and broad in detail.
In the context of urban modeling for example, it is now possible
to create accurate and detailed 3D models of cities. Such mod-
els are regularly used for various mapping applications, to provide
context-aware background for VR applications, or to assist users
via situation-aware feedback and suggestions.

Creating such large-scale models, however, is both challenging and
labor intensive. Models are still predominantly created by skilled
professionals cleaning up raw scans with polygon-level operations
in the paradigm of CAD/CADM software that has been around for
a few decades. In terms of representation, a 3D model is a file that
is loaded into a running software instance. The model is loaded,
edited and then saved out back to a disk. The file that contains the
model might be version-controlled or stored on a distributed file
system. Such a workflow assumes 3D model creation and main-
tenance is handled by a single central agency, ignores high-level
structural information in the original scenes, and is difficult to open
up for collaborative handling.

This contrasts with the editing of large-scale 2D documents where
with the evolution of web technologies, document editing is now
supported by a variety of distributed tools. Platforms such as
Wikipedia and Google Docs show that construction and mainte-
nance of very large-scale resources can be done with distributed
collaborators in real-time. Inspired by these paradigms, we pro-
pose Open3D as a platform for distributed, collaborative curation
of very large-scale 3D models. Although there are recent efforts
around web3d technologies that have targeted distribution of large
models for viewing, support for simultaneous collaborative editing
of these models remains limited. Our goal is to decouple storage
of 3D models from viewing and editing using open interfaces that
enable a web-service-like decomposition of editing (see Figure 1).

In this paper, we propose an initial architecture and prototype im-
plementation for Open3D. We demonstrate collaborative simulta-

http://dx.doi.org/10.1145/2945292.2945302


neous editing of a city model with each user being able to visualize
segments of the city, indicate building(s) to edit, lock and update the
building geometry using a novel parameterized modeling system,
and then push changes to all viewers. We identified two key require-
ments for such a collaborative curation platform for large-scale 3D
models: the platform should (i) ensure consistency among the 3D
assets as they can be simultaneously edited by multiple users, and
(ii) provide easy-to-use highlevel manipulation handles to simplify
editing experience, especially since we do not expect users to have
specialist training in 3D editing tools.

To address the first requirement, we propose a server-based lock-
ing mechanism to dynamically grant editing rights to users. Users
can select building(s) to edit, and the server issues the relevant edit-
ing right(s). A more advanced version would be to allow ‘merg-
ing’ of possibly conflicting multiple edits for same region of in-
terest. To address the second requirement, we propose a hybrid
representation that allows highlevel parameterized edits to under-
lying procedural 3D models. As an added advantage, we can re-
target user edits to other similar models thus further simplifying
editing of large-scale models, especially in a collaborative setting.
Finally, to bootstrap the initial model creation stage, we present an
automatic approach to fuse information from multiple GIS sources
(e.g., OpenStreetMap, ordnance survey data) to create an initial 3D
model of a city using available metainformation. Open3D models
can directly be browsed and investigated using a Cesium plugin and
are readily viewable on mobile devices.

2 Related Work

3D Online. The goal of collaboratively editing a large-scale 3D
model online draws on several areas of previous research. The first
of these is the broad area of networking for graphics applications
[Steed and Oliveira 2009]. Networked graphics applications such
as games often use custom client software, but this can be a prob-
lem for maintenance for large user populations. The broad category
of web 3d technologies uses models of distribution of code and as-
sets that are based on well-understood models from the world-wide
web [Evans et al. 2014]. Principally, that the users installs a browser
client that abstracts the local operating system and provides net-
work support, and that assets are loaded from servers. Application
code is also considered an asset and thus it is loaded from exter-
nal servers. Any behaviour is built using scripts that utilize the
browser functionality. While plugins for specific formats have been
very popular, the predominant way of exploiting web 3d is to use
3D functionality built-in to the browser through WebGL [Kronos
Group]. The main function of WebGL is to represent the OpenGL
functionality in the underlying operating system. It is thus rather
low-level and many JavaScript libraries have emerged that provide
higher level functionality. For example the XML3D [Sons et al.
2010] and X3DOM [Behr et al. 2009] libraries provide 3D scene-
graph functionality on top of the Document Object Model (DOM).
Both of these support storage of assets in separate files that can be
served by a standard webserver.

Editing and revision management. In software development, ver-
sion control systems (VCSs) such as Subversion, Git, and PerForce
are ubiquitous. VCSs allow distributed editing of a shared codebase
and also facilitate management of multiple versions. A key policy
in software management is whether or not to allow locks on objects
to prevent conflicts [Mens 2002]. At one extreme, a file or object
might be locked, preventing others editing it; at the other, anyone
can edit files or objects, but may need to merge changes later.

Most modern VCS technologies are not ideal when used with 3D
models because they take a merge later approach. Unfortunately
edits to 3D assets often change whole files because they affect a

lot of vertices or reorder assets, and thus the textual edits that are
supported well by current VCS tend to fail on 3D models which
are either binary files or have to be treated as binary files because
the structure cannot be determined. Recent work has started to
tackle this. Doboš and Steed [2012] presented a system for eval-
uating mesh differences and resolve clashes. The XML3DRepo
system then demonstrates how to use a REST-style API to store ver-
sions of files in that exchanged using the XML3D format [Doboš
et al. 2013]. A later demonstration used X3DOM [Scully et al.
2015] as the transfer format. Denning and Pelacini [2013] pre-
sented MeshGit and [Doboš et al. 2014] developed systems for dif-
ferencing and merging polygonal models. Some large-scale CAD
systems provide similar functionality [Dassault Systemes; Bent-
ley Systems]. The online collaborative tool Onshape uses a con-
cept called microversions where changes in different clients can be
merged at the individual action level.

In Open3D, we will take a locking approach rather than a merge
later approach. The locking approach is more common in real-time
distributed virtual environment systems, for example, see the CIAO
concurrency scheme [Sung et al. 1999]. One issue with taking this
approach to editing large scenes has been how to identify the lock-
able entity. On a shared file system a file might be marked as read
only. This problem can be avoided in online systems, by having
some naming scheme for individual meshes or mesh collections.
This fine-grained naming allows for locks on objects small enough
to avoid conflicts in many situations, see Section 4.

City models. In the specific area of geographics information sys-
tems, various database tools have been developed to store spatial
information [Rigaux et al. 2001]. Oracle Spatial provides spatial
indexing and search for geographic information [Oracle Corpora-
tion 2012]. However, this tool and similar tools tend to focus on
large geographic 2D data rather than the processing of individual
polygonal model edits. Open standard have emerged for the rep-
resentation of geographic data such as OpenGIS [GeoTools] and
CityGML [Open Geospatial Consortium], and these have a strong
relationship to web 3d tools. However, they do not directly ad-
dress the issues of versioning and collaborative editing. A desirable
feature for future work on Open3D might be able to support such
toolsets via import or export of regions of the models.

Many attempts have been made to generate virtual cities from ex-
isting GIS data. For example, a virtual model of London was
generated from 2D plans and supported in a collaborative virtual
world [Steed et al. 1999]. Recently Byelozyorov et al. [2013]
demonstrated an open architecture to generate models from Open-
Streetmap data. Gaillard et al. [2015] demonstrate generation of
a web visualization of city models starting with CityGML data.
Google Building Maker [Google Inc.] is a discontinued tool for city
curation in Google Earth that has been replaced by an automatic re-
construction of building models from aerial imagery. Although no
clear reasons were given for the decision, main concerns seem to
have been the required amount of manpower and insufficient model
quality. Results of the automatic reconstruction look impressive
when textured, but the underlying mesh, while sufficient for simple
map visualization, is quite noisy and inaccurate. With our para-
metric model, we aim to reduce the time required to model similar
buildings while maintaining a high quality level.

The main problem with a browser-based visualization of city mod-
els is that there is a wide variety of capabilities of browsers with
respect to rendering capacity, network capacity, storage, etc. Fur-
thermore, city models tend to be extremely large. For example,
later in this paper, we use the 3D Tiles capability of the Cesium
system [Analytical Graphics, Inc.]. This represents datasets in a hi-
erarchical manner, allowing client code in the browser to manage
loading and unloading of assets at different resolutions. To sup-



Open3D Browser
social hub, model browsing

serve models

send model selection

Open3D Editor
parametric model editing

Gina
> message

Responsible User
Geo Location

Edit

Ernie
> message

Bert
> message

serves models,
executes spatial queries,

model locking mechanisms

Open3D Server

serve model
& lock

update model
& unlock

Figure 2: Components of the Open3D System. The full scene can be viewed in the Open3D Browser (left). Analogous to a Wiki, this component also allows
users to interact and coordinate editing efforts. After picking a model, editing is performed in the separate Open3D Editor (right). Both of these components
communicate with the Open3D Server (center) to retrieve or update models. Editing conflicts are avoided through a locking mechanism.

port the widest range of browser, some combination of data pre-
processing and server-based rendering can be used. See, for exam-
ple Instant3DHub [Behr et al. 2015]. Krämer and Gutbell [2015]
evaluate some of the options for managing large urban models in
current web 3d tools; Kim et al. [2015] evaluate some of the options
for encoding geospatial data within X3D; while, Stein et al. [2014]
investigate use of spatial acceleration data structure to enable larger
models to be supported on the web.

Procedural modeling. In the context of large-scale 3D models,
procedural model generation has a long and successful history (see
survey [Smelik et al. 2014]). The recurring challenge, however, is
that complex and detailed models typically require advanced proce-
dural modeling operations [Schwarz and Müller 2015], which are
difficult to author for most novice users. Hence, Open3D proposes
a hybrid representation, wherein users can create detailed building
models through high-level specifications and by reusing compara-
ble edit histories from modeling sessions of similar buildings in a
collaborative curation setup.

3 Overview

In collaborative editing systems, users work on separate parts of
a larger structure. The core tasks performed by collaborators in-
volve finding a part to work on and editing it, not unlike single-user
systems. However, collaborative crowd-sourced systems have ad-
ditional requirements: assets need to be kept consistent across all
users, the editing process has to be simple and appealing to reach
a large audience, data needs to be protected from vandalism, and a
social platform needs to be provided to support a community.

The Open3D System consists of three main components connected
over a web API: server, browser, and editor (see Figure 2). In a typ-
ical workflow, a collaborator browses the model while interacting
with the community, selects an individual part of the model, edits
the part, and returns to the browser when done.

The entire large-scale model is stored on the server, which is re-
sponsible for serving parts of the model as needed and merging
updated model parts from the editor before pushing changes to all
collaborators. It avoids conflicting edits by locking model parts.

The browser facilitates navigation of the large-scale model and se-
lection of individual parts, gives an overview of contributor activ-
ity and acts as a social hub where contributors can communicate
and coordinate modeling tasks. It provides a read-only view of the
model that can be augmented with additional information. This can
include an indication of models that are currently being edited, or
models that have been modified recently.

The editor supports a hybrid between parametric and traditional
polygon modeling. The idea is to combine intuitive traditional

modeling with the efficiency of parametric models. During a tra-
ditional modeling session, the parametric model is automatically
constructed or updated in the background and can be used to effi-
ciently modify or generate variations of a model. This parametric
model also acts as an edit history reaching back to the initial cre-
ation of the model. In case of model corruption, it can be used to
restore an earlier model version. Details are described in Section 5.

4 The Open3D System

In current collaborative editing systems, browsing and editing can
either be tightly coupled, as in Wikipedia, where editor and browser
are part of the same web page; or more loosely connected, as in
OpenStreetMap [OpenStreetMap Foundation], where editing is per-
formed with external applications. Since editing 3D models usually
requires a larger and more complex toolset than editing text, we opt
for a decoupled architecture, where browser and editor are two sep-
arate components. This separation allows for a greater flexibility in
the choice of editor: custom editors, as well plugins for established
editors like Blender or Maya might be used.

Model formats and data flow. Open3D aims at supporting inter-
operability with custom browsers, editors, and servers. Therefore,
data flow and communication between components has to be stan-
dardized. Below we describe the standards used for transmitting
data between the components. See Figure 3 for an illustration.

Data flows mainly between server↔browser or server↔editor, with
very little direct communication between browser and editor. The
Open3D server delivers two types of model data: the geometry of
individual model parts and scene metadata that describes the posi-
tion of model parts in a geodetic reference system.

Scene metadata may be delivered as a flat list of part positions using
the CZML format [Analytical Graphics, Inc.], or as a spatial hier-
archy using Cesium 3DTiles [Analytical Graphics, Inc.]. As op-
posed to generic spatial databases, 3DTiles is specifically designed
for displaying large city models, with heterogeneous level of detail
and good support for interactivity, streaming and rendering. CZML
was developed by the same group and is currently supported by the
the same libraries that also support 3DTiles. Given such scene in-
formation, a client may perform a spatial query and only request
model parts that are in view. When working with very large scenes,
the server may also perform a spatial query and only return the
parts of the scene metadata relevant for the current viewpoint of the
browser, for example, metadata for all model parts within a given
radius of the viewpoint. When using Cesium 3DTiles, different lev-
els of detail may be returned as well.

Model part geometry is delivered in three different formats:
glTF [Khronos Group], Collada [Barnes and Finch 2008] and our



Cesium 3DTiles or CZML
scene layout metadata

model
database

scene server
performs spatial

queries

model server
locking for

 collaborative editing

Open3D Server

Open3D Editor

Open3D Browser

social hub
interact with
collaborators

model viewer
view and

select models

local server
receieves model URL

high-level model editor
edit models efficiently

glTF model

modi�ed

Collada + JSON

data �ow
(RESTful API)

Collada & JSON

3DTiles / CZML

selected
model URL

scene
database

Collada
for editing, wide compatibility

JSON
for editing, parametric model
speci�c to Open3D

glTF
for browsing, wide compatibility

Figure 3: Component details and data flow between components. Multiple heterogeneous browsers or editors may be connected to the same server. Data flow
between components is implemented with a RESTful API that allows for easy interoperability with custom browsers, editors or servers.

custom parametric format using JSON. Each format is suitable for
a specific use case. glTF is an open model format that differs from
other formats like X3D [Web3D Consortium 2008] or Collada in
that it was specifically designed for efficient streaming and load-
ing into an OpenGL renderer. This format is suitable for use in the
browser on both PC and mobile platforms, since large amounts of
model data can be transmitted and parsed efficiently. However, it is
not well suited for editing, since information not essential for ren-
dering is discarded to optimize file size. Collada is a format for 3D
assets that is compatible with a large number of 3D editors. We use
this format for transmission of models to and from the editor due
its wide compatibility and completeness of features. Both glTF and
Collada are managed by the Khronos Group and there exists good
support for converting between the two formats. Our custom para-
metric format contains the information necessary to support para-
metric editing operations. In case of vandalism or corruption of the
Collada file, it can be used to revert the model to a previous state.
Each model has a unique identifier that is referenced in the scene
metadata and that can be use to access the model.

Browser↔editor communication is limited to transmitting the
model part selection from browser to editor, as described next.

Editing cycle. Here we describe the communication between
server, browser, and editor, as well as the expected behavior of
the server in more detail. All communication takes place over a
RESTful API. Figure 5 shows the requests issued during a typical
browsing/editing cycle.

Communication between browser and server is handled by repeat-
ing two request types: the first request retrieves scene metadata rel-
evant for the current viewpoint from the server. The server issues
a spatial query with the given viewpoint into the scene database
to find and return the requested metadata. The second request re-
trieves the glTF model parts referenced in the scene metadata from
the server. Model parts are always referenced by unique identifiers.
Before issuing the request, the browser may remove identifiers of
parts that are not in view or that are not likely to come into view.

At any time, the user may select a model part in the browser and
start editing. The selected model part identifier is sent to the editor,
which retrieves the associated Collada and parametric model files.
On the server side, the given model identifier is marked as locked
as soon as the Collada or JSON files are requested, preventing any
other user from editing the model part. After editing, the altered
model files are pushed back to the server. The server then updates
the glTF file from the modified Collada file and unlocks the model.
The user may then continue browsing for a new model part.

Locking. Keeping the shared model consistent and avoiding editing
conflicts are important tasks of a collaborative editing system. We

employ locking to ensure that only one user can edit a model part at
any given time. The browser receives the current locked/unlocked
status of a model when retrieving its glTF file. Models currently
being edited are indicated by a red color in the viewer and request-
ing the Collada or parametric model files for one of these models
returns an error. A timeout may be applied to avoid locking mod-
els permanently. See Section 8 for ideas on how to achieve more
fine-grained locking using our parametric model.

Current implementation. As a research prototype, we imple-
mented most components of the architecture described above. An
overview of our current implementation is shown in Figure 4.
Please also refer to the accompanying video. Both scene and model
servers are implemented using Express [Node.js Foundation] run-
ning in the performant Node.js Javascript environment [Node.js
Foundation], giving us platform independence and a greater flex-
ibility to quickly test changes, which is the focus of our current
implementation. Spatial queries and Cesium 3DTiles on the scene
server are not fully supported in our prototype. Instead, we cur-
rently return the CZML metadata for the entire scene.

Open3D Editor Open3D Browser Open3D Server
social hub
to be done

model viewer
Cesium with CZML
3D Tiles to be done

parametric model editor
custom Matlab editor
for research/testing

local server
Python web.py

scene server
CZML only,

3D Tiles to be done

model server
Express on Node.js

Figure 4: Current implementation of each component.

The model viewer is implemented in the Cesium javascript li-
brary [Analytical Graphics, Inc.], an open-source Javascript frame-
work for streaming and visualizing three-dimensional geographic
data. The viewer runs in a browser on any platform that supports
WebGL. The social hub is not yet available and will be added in a
future version of our system, see Section 8 for details.

The editor implements our new parametric editing model and
we have opted to use a custom framework implemented in Mat-
lab [MATLAB 2016] that facilitates quick cycles of implementing
and testing new features. The local server that receives the selected
model part URL and opens up the editor is implemented in Python
using web.py and Matlab’s Engine API for Python.

This set of components gives us an initial framework we can use to
perform research and testing. We plan to expand this framework in
the future to include the missing components, as well as to test the
viability of possible future additions to the Open3D architecture,
such as more fine-grained locking mechanisms. Our system will be
opensourced as we hope others will collaborate and contribute to
alternate browser/client plugins.



Open3D Server
GET with camera pose

return relevant scene metadata

GET model ids in view

return glTF models

return Collada & JSON models

POST selected model id

GET edited model id query by id

spatial query

PUT edited model id with
modi�ed Collada & JSON models update glTF

from Collada

unlock model id

scen
e

layo
u

t

query by id

lock model id

browser and editor actions RESTful requests server actions

CZML or
3D Tiles

Open3D Browser

Open3D Editor

Gina
> message

Responsible User
Geo Location

Edit

Bert
> message

glTF
Collada
JSON
lock �ag

glTF
Collada
JSON
lock �ag

glTF
Collada
JSON
lock �ag

browse and pick a model

edit model

m
o

d
els

m
o

d
els

m
o

d
els

Figure 5: Actions performed by our system during a typical browsing/editing cycle. To avoid conflicts, models are locked on the server while being edited.

5 Parametric Model Representation

In urban modeling, there are two main approaches to modeling
buildings: the traditional polygon- or mesh-based modeling ap-
proach used in software such as AutoCAD [AutoDesk, Inc.], and
parametric modeling (e.g., procedural models) such as employed
in CityEngine [Esri]. Traditional modeling is intuitive and creating
a new building from scratch is relatively straight-forward. How-
ever, modifying an existing building or creating new variations of
an existing building usually involves a lot of repetitive work, like re-
arranging all the details that were modeled on the building, such as
windows, doors, etc. In procedural modeling, on the other hand,
creating a new building from scratch is more involved. Expert
knowledge is required to design such a parametric model and, sim-
ilar to writing code, planning ahead is necessary to account for pos-
sible scenarios the parametric model might be used in. Modifying
an existing building or creating new variations, on the other hand,
can usually be efficiently done by adjusting only a few parameters.

Our collaborative approach favors simple modeling techniques that
can reach a large community of contributors, while working with
large cities requires an approach that allows for easy modification
of buildings. To satisfy both requirements, we introduce a new
modeling approach we call implicit parametric modeling. Initially,
buildings are created in a traditional modeling session. During the
modeling session, we build an initial parametric model in the back-
ground, based on the operations performed by the user. This initial
model is a first rough guess at the parameters the user may want to
modify and can be refined by the user as needed through a simple
editing interface.

The parametric model for a simple building is shown in Figure 6.
Individual operations performed during the editing session form the
nodes of a directed acyclic graph, called the operation graph (see
Appendix A for a list of currently implemented operations). Edges
describe dependencies between operations, which define an order in
which the operations must be performed: child nodes must always
be applied after their parents. There are two types of edges. Direct
dependencies exist from a node that creates or modifies a part of
the scene to a node that uses this modified part as input. These are
depicted as solid arrows in Figure 6. For example, the ‘Copy’ oper-
ation uses the output of the ‘Extrude’ operation as input (part B v2)
and is therefore dependent on the ‘Extrude’ operation. Implicit de-

pendencies exist from nodes that use a given part as input to nodes
that modify this part. These dependencies prevent operations from
changing scene parts before other operations get a chance to use
them. An example is the ‘Array Copy’ operation, which must be
performed before the ‘Delete’ operation that modifies part F v1.
The parameters of our parametric model are then defined as the pa-
rameters of each operation in the graph.

Given the operation graph, the building can be edited efficiently by
changing operation parameters. Examples of three edits are shown
in Figure 6A, 6B, and 6C, where the rectangle width, circle radius,
and extrusion height parameters are changed to modify the building
width, column radius and building height, respectively. These edits
would be more difficult in a traditional modeling approach, where
individual vertices would need to be selected and modified, and
windows and doors would need to be moved.

Retargeting operations. For some operations, there is ambiguity
in how to retarget a given operation to a changed input. For exam-
ple, retargeting the door placement shown in Figure 6A to a build-
ing with modified width is ambiguous: should the door remain at
the center of the facade or rather maintain its distance from the left,
or right edge of the facade? Depending on the situation, the user
may want to use any of these retarget types. We implement sev-
eral retarget types for each operation and set one as default. After
changing a parameter of the model, the user may change the retar-
get type if needed by manually adjusting inappropriately retargeted
scene parts. In Figure 6A, for example, by dragging the door to its
intended position. Our system can then automatically select the re-
target type that best matches the new position. Figure 6D shows the
same result with a modified retarget type that maintains the distance
to the right, instead of the left facade edge.

6 Importing GIS Data

Open3D makes it relatively easy to directly import GIS data and
generate initial rough models based on this data. An overview of
the steps performed by our method is shown in Figure 7. We ex-
tract building footprints and building heights from the GIS data and
use them as parameters in a predefined parametric model consisting
of two operations: creation of the footprint polygon using the foot-
print vertices as parameter and extrusion using the building height



Create Rect. Create Circle

Extrude Extrude

Mesh Boolean

Mesh Boolean

Create MeshCreate Mesh

Delete

Array Copy

Copy

part B v1part A v1

part A v2

part B v2

part E v1

part C v1

part D v1

part F v1
part G v1

B
change
radius

A
change
width

D
change
retarget

type
E

change
spacing

A & D

A

B & E

original B

C
change
height

C

output model

Figure 6: The operation graph of a building model. Rounded rectangles denote operations and solid arrows input and output model parts. Dotted arrows
illustrate implicit dependencies between operations. On the right we show the results of several modifications of the operations graph. Modifications that
would require a lot of operations in traditional modeling can be done efficiently using our parametric model. Each variations was created with one or two
modifications of the operations tree.

as parameter. The parametric model is used to generate the initial
models for all all imported buildings. To avoid numeric issues with
vertex coordinates, we save vertices in the local coordinate system
of each building and store the location of each building in a gen-
erated scene CZML file. The models are then added in glTF, Col-
lada and parametric format to the Open3D server and the generated
scene file is merged with the scene file on the server.

(e.g. OS MasterMap)
building footprints
building heights

param. model JSON
glTF, Collada
3DTiles / CZML

initial models:GIS data source (KML) Open3D Server

Figure 7: Steps performed for importing models from a GIS data source.
Building footprints and heights are obtained from the data source and used
to automatically synthesize initial buildings using our parametric model.

To accommodate additional data that might be available in a GIS
source, for example the height of building roofs, we can extend
the parameteric model used to generate the initial buildings with
additional operations that use the added data as input. Both the def-
inition of the parametric model and the binding of data to operation
parameters is currently defined in a simple matlab script, however
it would be straight-forward to create an import interface instead.

In our implementation, we currently support the CZML format, as
well as the KML format, which is used by Google Earth, Google
Maps and most of the major GIS data providers.

7 Examples and Discussion

In this section, we show several examples of buildings created with
our implicit parametric modeling approach Three different building
types modeled in our editor are shown in Figure 8. On the right
of each building, we show variations created by modifying up to
three parameters of the parametric model constructed implicitly in
the background of the editing session. The exact number of oper-
ations performed for initial model creation and subsequent modifi-

cation are shown below each example. Modifications include the
width and height of the building mass model, the radius or thick-
ness of details such as roof, pillars and small towers, and the layout
of protrusions, windows and doors on the facades. In traditional
mesh modeling, modifying properties such as the building height
would require a large number of low-level adjustments. In addition
to modifying individual window and door positions, parts of the fa-
cade would have to be re-modeled from scratch, since high-level
information such as the cylindrical shape of the small towers may
no longer be available in the merged mesh. Note that generating
variations of buildings with different height or width is equivalent
to propagating the parametric model to new buildings of different
height or width, as shown in Figure 1.

This modeling approach is designed to scale with large city models
and multiple collaborators. In typical cities, buildings with similar
architectural style often appear multiple times throughout the city.
Using our model, one collaborator can model an initial building in a
traditional modeling session, and other collaborators can re-use the
resulting parametric model to create buildings with similar style in
just a few operations, refining the parametric model as needed by
updating the re-target types of operations.

8 Conclusion

We presented Open3D, a system architecture for crowd-sourced
distributed curation of large-scale city models. Open3D enables
a community of collaborators to simultaneously edit a city model.
Server-side locking mechanisms prevent editing conflicts, a web-
based browser enables efficient inspection of the model on desk-
top and mobile devices, and a new modeling approach allows for
intuitive and efficient curation (i.e., both creation and editing) of
large-scale models.

Continuing the development of Open3D, we plan to include more
fine-grained locking mechanisms on the level of operations in the
parametric operation graph, as opposed to the level of building
models. Multiple users could work on different aspects of the same



original building variations

27 operations

15 operations

53 operations

footprint width,
building height,
window spacing

footprint width,
building height,
window spacing

footprint width,
building height

inset facade width,
building height,
roof height

tower radius building heightbuilding width tower radius
window spacing

footprint width,
building height

building height,
rounded corner radius,
pillar radius

building height,
center facade width,
cylindrical roof radius

Figure 8: Variations of building models created with our parametric modeling approach. The number of operations in the three parametric model is shown
below the original buildings on the left. Each variation was created by modifying the parameters of three operations or less, which are given below each
building. In traditional mesh modeling, editing the original models to create these variations would be significantly more difficult.

model; one user might work on the shape of the mass model, while
a second user modifies the shape of individual windows. Similar to
a version control system, changes could be merged back by merging
the modified operation trees. The parametric model also provides a
compact representation of a model that could be used to efficiently
store an incremental history of each scene model. This history
could be used as protection against data corruption and vandalism.
In the near term, we plan to finish the implementation of all com-
ponents described in the Open3D architecture, including the social
hub and spatial server queries. We would also like to add more op-
erations to our parametric model, for a more streamlined modeling
experience. With the social hub, we plan to give users a space to
discuss models and required changes (e.g. with mark-up of model
parts), and possibly post and accept gamified modeling tasks. Fi-
nally, we plan to extract a reference for the 3D shape and texture of
each building from available street-level photographs (e.g., Google
Street View), as additional assistance for building modeling.

Acknowledgements

We thank the anonymous reviewers for their feedback and Moos
Hueting for help with the video. This work was supported by the
Open3D Project (EPSRC Grant EP/M013685/1).

References

ANALYTICAL GRAPHICS, INC. Cesium. https://cesium.agi.com/.
Accessed: 2016-04-14.

AUTODESK, INC. AutoCAD. http://www.autodesk.com/products/
autocad. Accessed: 2016-04-15.

BARNES, M., AND FINCH, E. L. 2008. COLLADA - Digital Asset
Schema Release 1.5.0. Specification, Khronos Group, April.

BEHR, J., ESCHLER, P., JUNG, Y., AND ZÖLLNER, M. 2009.
X3dom: A dom-based html5/x3d integration model. In ACM
Web3D, 127–135.

BEHR, J., MOUTON, C., PARFOURU, S., CHAMPEAU, J.,
JEULIN, C., THÖNER, M., STEIN, C., SCHMITT, M., LIMPER,
M., DE SOUSA, M., FRANKE, T. A., AND VOSS, G. 2015. we-
bVis/Instant3DHub: Visual computing as a service infrastructure
to deliver adaptive, secure and scalable user centric data visuali-
sation. In ACM Web3D, 39–47.

BENTLEY SYSTEMS. Assetwise. https://www.bentley.com/en/
products/brands/assetwise. Accessed: 2016-04-14.

BYELOZYOROV, S., JOCHEM, R., PEGORARO, V., AND
SLUSALLEK, P. 2013. From real cities to virtual worlds using
an open modular architecture. TVCJ 29, 2, 141–153.

DASSAULT SYSTEMES. Enovia. http://www.3ds.com/
products-services/enovia/solutions. Accessed: 2016-04-14.

DENNING, J. D., AND PELLACINI, F. 2013. Meshgit: Diffing
and merging meshes for polygonal modeling. ACM TOG 32, 4
(July), 35:1–35:10.

DOBOŠ, J., AND STEED, A. 2012. 3d revision control framework.
In ACM Web3D, 121–129.

DOBOŠ, J., SONS, K., RUBINSTEIN, D., SLUSALLEK, P., AND
STEED, A. 2013. Xml3drepo: A rest api for version controlled
3d assets on the web. In ACM Web3D, 47–55.

DOBOŠ, J., MITRA, N. J., AND STEED, A. 2014. 3D timeline:
Reverse engineering of a part-based provenance from consecu-
tive 3d models. CGF Eurographics.

ESRI. CityEngine. http://www.esri.com/software/cityengine. Ac-
cessed: 2016-04-15.

https://cesium.agi.com/
http://www.autodesk.com/products/autocad
http://www.autodesk.com/products/autocad
https://www.bentley.com/en/products/brands/assetwise
https://www.bentley.com/en/products/brands/assetwise
http://www.3ds.com/products-services/enovia/solutions
http://www.3ds.com/products-services/enovia/solutions
http://www.esri.com/software/cityengine


EVANS, A., ROMEO, M., BAHREHMAND, A., AGENJO, J., AND
BLAT, J. 2014. 3d graphics on the web: A survey. Computers
& Graphics 41, 43–61.

GAILLARD, J., VIENNE, A., BAUME, R., PEDRINIS, F., PEY-
TAVIE, A., AND GESQUIÈRE, G. 2015. Urban data visualisation
in a web browser. In ACM Web3D, 81–88.

GEOTOOLS. OpenGIS. http://docs.geotools.org/stable/userguide/
library/opengis. Accessed: 2016-04-15.

GOOGLE INC. Google Building Maker. http://www.gearthblog.
com/blog/archives/2013/03/google will be discontinuing the
bu.html. Accessed: 2016-05-27.

KHRONOS GROUP. GL Transmission Format (glTF). https:
//github.com/KhronosGroup/glTF. Accessed: 2016-04-15.

KIM, J.-S., POLYS, N., AND SFORZA, P. 2015. Preparing and
evaluating geospatial data models using x3d encodings for web
3d geovisualization services. In ACM Web3D, 55–63.

KLEIN, F., SONS, K., JOHN, S., RUBINSTEIN, D., SLUSALLEK,
P., AND BYELOZYOROV, S. 2012. Xflow: Declarative data
processing for the web. In ACM Web3D, 37–45.

KRÄMER, M., AND GUTBELL, R. 2015. A case study on 3d
geospatial applications in the web using state-of-the-art webgl
frameworks. In ACM Web3D, 189–197.

KRONOS GROUP. WebGL. https://www.khronos.org/registry/
webgl/specs/1.0/. Accessed: 2016-04-14.

MATLAB. 2016. version 9.0 (R2016a). The MathWorks Inc.

MENS, T. 2002. A state-of-the-art survey on software merging.
IEEE TSE 28, 5 (May), 449–462.

MICHAELIS, N., JUNG, Y., AND BEHR, J. 2012. Virtual heritage
to go. In ACM Web3D, ACM, 113–116.

NODE.JS FOUNDATION. Node.js. https://nodejs.org/en/
foundation/. Accessed: 2016-04-15.

ONSHAPE INC. Under the hood: How collaboration
works in Onshape. https://www.onshape.com/cad-blog/
under-the-hood-collaboration. Accessed: 2016-04-14.

OPEN GEOSPATIAL CONSORTIUM. Ogc city geography markup
language (citygml) encoding standard, 2.0.0. http://www.
opengeospatial.org/standards/citygml. Accessed: 2016-04-14.

OPENSTREETMAP FOUNDATION. OpenStreetMap editors. http:
//wiki.openstreetmap.org/wiki/Editors. Accessed: 2016-04-22.

ORACLE CORPORATION, 2012. Oracle spatial & oracle
locator, location features for oracle database 11g, Jan-
uary. http://www.oracle.com/technetwork/database/options/
spatial/overview/introduction/index.html.

PLESCH, A., AND MCCANN, M. 2015. The X3D geospatial com-
ponent: X3DOM implementation of GeoOrigin, GeoLocation,
GeoViewpoint, and GeoPositionInterpolator nodes. In ACM
Web3D, 31–37.

RIGAUX, P., SCHOLL, M., AND VOISARD, A. 2001. Spatial
Databases: With Application to GIS. Morgan Kaufmann.

SCHWARZ, M., AND MÜLLER, P. 2015. Advanced procedural
modeling of architecture. ACM TOG 34, 4 (July), 107:1–107:12.

SCULLY, T., DOBOŠ, J., STURM, T., AND JUNG, Y. 2015.
3drepo.io: Building the next generation web3d repository with
angularjs and x3dom. In ACM Web3D, 235–243.

SHARAKHOV, N., POLYS, N., AND SFORZA, P. 2013. Geospy: A
web3d platform for geospatial visualization. In ACM MapInter-
act, 30–35.

SMELIK, R. M., TUTENEL, T., BIDARRA, R., AND BENES, B.
2014. A survey on procedural modelling for virtual worlds. CGF
33, 6, 31–50.

SONS, K., KLEIN, F., RUBINSTEIN, D., BYELOZYOROV, S., AND
SLUSALLEK, P. 2010. Xml3d: Interactive 3d graphics for the
web. In ACM Web3D, 175–184.

STEED, A., AND OLIVEIRA, M. 2009. Networked Graphics:
Building Networked Games and Virtual Environments. Elsevier.
ISBN-10: 0123744237.

STEED, A., FRÉCON, E., AVATARE, A., PEMBERTON, D., AND
SMITH, G. 1999. The london travel demonstrator. In ACM
VRST, 50–57.

STEIN, C., LIMPER, M., AND KUIJPER, A. 2014. Spatial data
structures for accelerated 3d visibility computation to enable
large model visualization on the web. In ACM Web3D, 53–61.

SUNG, U.-J., YANG, J.-H., AND WOHN, K.-Y. 1999. Concur-
rency control in CIAO. In IEEE VR, 22–28.

V. KOTHURI, R., GODFRIND, A., AND BEINAT, E. 2012. Pro
Oracle Spatial for Oracle Database 11g. Apress Academic.

WEB3D CONSORTIUM, 2008. Extensible 3d (X3D). ISO/IEC
19775:200x, http://www.web3d.org/x3d/specifications/
x3dspecification.html.

A Implemented Operations

The following operations are currently implemented in our proto-
type. New operations can be added to this list as needed.

• CreateCircle: parameterized by a center and radius, creates a
circle polygon.

• CreatePolygon: parameterized by polygon vertices, creates an
arbitrary polygon.

• CreateRectangle: parameterized by a center, width and
height, creates an arbitrary rectangle.

• CreateMesh: parameterized by vertices and faces, creates an
arbitrary mesh.

• ChangePose: parameterized by a change in pose (including
change in position, orientation and scale), changes the pose
by a delta relative to the current pose.

• Copy: parameterized by a target pose, copies the input to the
given target pose.

• ArrayCopy: parameterized by element spacing and a target
rectangle, creates and array of copies of the input in the given
target rectangle.

• Extrude: parameterized by an extrusion height, extrudes the
input by the given amount.

• PolygonBoolean: parameterized by the type of boolean oper-
ation, performs a boolean operation on two input polygons.

• MeshBoolean: parameterized by the type of boolean opera-
tion, performs a boolean operation on two input meshes.

• Delete: no parmeters, deletes the input scene parts.

http://docs.geotools.org/stable/userguide/library/opengis
http://docs.geotools.org/stable/userguide/library/opengis
http://www.gearthblog.com/blog/archives/2013/03/google_will_be_discontinuing_the_bu.html
http://www.gearthblog.com/blog/archives/2013/03/google_will_be_discontinuing_the_bu.html
http://www.gearthblog.com/blog/archives/2013/03/google_will_be_discontinuing_the_bu.html
https://github.com/KhronosGroup/glTF
https://github.com/KhronosGroup/glTF
https://www.khronos.org/registry/webgl/specs/1.0/
https://www.khronos.org/registry/webgl/specs/1.0/
https://nodejs.org/en/foundation/
https://nodejs.org/en/foundation/
https://www.onshape.com/cad-blog/under-the-hood-collaboration
https://www.onshape.com/cad-blog/under-the-hood-collaboration
http://www.opengeospatial.org/standards/citygml
http://www.opengeospatial.org/standards/citygml
http://wiki.openstreetmap.org/wiki/Editors
http://wiki.openstreetmap.org/wiki/Editors
http://www.oracle.com/technetwork/database/options/spatial/overview/introduction/index.html
http://www.oracle.com/technetwork/database/options/spatial/overview/introduction/index.html
http://www.web3d.org/x3d/specifications/x3d specification.html
http://www.web3d.org/x3d/specifications/x3d specification.html

