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Figure 1: We propose a method to control and improve the appearance of an existing material (left) by transferring the appearance of
materials in one or multiple target photo(s) (center) to the existing material. The augmented material (right) combines the coarse structure
from the original material with the fine-scale appearance of the target(s) and preserve the input tileability. Our method can also transfer
appearance from materials from different types by spatial control. This enables a simple workflow to make existing materials more realistic
using readily-available images or photos.

Abstract
Despite the ubiquitous use of materials maps in modern rendering pipelines, their editing and control remains a challenge.
In this paper, we present an example-based material control method to augment input material maps based on user-provided
material photos. We train a tileable version of MaterialGAN and leverage its material prior to guide the appearance transfer,
optimizing its latent space using differentiable rendering. Our method transfers the micro and meso-structure textures of user
provided target(s) photographs, while preserving the structure and quality of the input material. We show our methods can
control existing material maps, increasing realism or generating new, visually appealing materials.

CCS Concepts
• Computing methodologies → Reflectance modeling;

1. Introduction

Realistic materials are one of the key components of vivid virtual
environments. Materials are typically represented by a parametric
surface reflectance model and a set of 2D texture maps (material
maps) where each pixel represents a spatially varying parameter of
the model (e.g. albedo, normal, and roughness values). This repre-
sentation is ubiquitous because of its compactness and ease of vi-

sualization. It is also used by most recent light-weight acquisition
methods [DAD∗18, DAD∗19, GLD∗19, GSH∗20]. Material maps
are however difficult to edit. In addition to the significant artistic
expertise required to create realistic material detail, tools such as
Photoshop [Ado22a] are designed for natural images rather than
parameter maps and make it hard to account for the correlations
that exist between individual material maps. Previous work pro-
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posed propagating local edits globally through segmentation and
similarity [AP08] or providing an SVBRDF † exemplar to trans-
fer material properties [DDB20], but these edits remain limited
to spatially constant material parameter modifications. Procedural
materials [Ado22b, HDR19, SLH∗20, HHD∗22] also enable mate-
rial map editing, but are challenging to design and can lack real-
ism if the procedural model is not expressive and realistic enough
[HDR19].

In this paper, we propose a method to control the appearance
of material maps using photographs or online textures. Given a
set of input material maps and target photographs (or textures),
we transfer micro- and meso-scale texture details from the target
photographs to the input material maps. We preserve the large-
scale structures of the input material, but augment the fine-scale
material appearance based on the target photographs using a vari-
ant of style transfer [GEB16]. Unlike Deschaintre et al. [DDB20],
our approach uses easy to find or capture photographs instead of
SVBRDF maps as targets.

Using style transfer from photographs to material maps poses
several challenges. First, we need to optimize the material maps to
produce the desired fine-scale details in the rendered image, rather
than directly optimizing the output image. Second, we need to make
sure material properties remain realistic during this optimization,
including the correlation between material maps. In Fig. 2, we show
that a naive adaptation of image style transfer fails to generate high-
quality material maps due to these difficulties. To address both of
these challenges, we propose using material generation priors to
guide the transfer of micro and meso-scale texture details while re-
taining realistic material properties. We use MaterialGAN, a gen-
erative model trained on material maps [GSH∗20], as a prior and
modify it to preserve tileability, a particularly important feature to
keep memory requirement low in production. Our transfer opera-
tion optimizes the latent space of our pre-trained tileable Material-
GAN using differentiable rendering to transfer the relevant details
while preserving the structure of the original input material maps.

The idea of material appearance or style on a spatially-varying
material can be ambiguous. There are different aspects of appear-
ance that a designer may see in an exemplar that they would like
to transfer to an existing material, requiring some control. To pro-
vide this control we introduce multi-example transfer with spatial
guidance: our method allows transferring texture details to pre-
cise user-specified regions only. We propose using a sliced Wasser-
stein loss [HVCB21] to guide our transfer and supports multi-target
transfer thanks to a resampling strategy we introduce. We addition-
ally describe a slightly slower but better grounded formulation to
compare distributions with different sampling based on the Cramér
loss [Cra28].

We demonstrate creating new materials with our image-guided
editing operations in various applications. To summarize, our con-
tributions are:

• A material transfer method for controlling appearance of mate-
rial maps using photo(s).

† Spatially-Varying Bidirectional Reflectance Distribution Function

• MaterialGAN as a prior for tileable materials appearance trans-
fer.

• A multi-target transfer option with fine region control.

2. Related Work

2.1. Material Appearance Control

Control and editing of material appearance is a long standing chal-
lenge in computer graphics. Different solutions have been pro-
posed, depending on the targeted material representation. Tab-
ulated materials are represented in a very high dimension, un-
intuitive space [WAKB09], making their manipulation difficult.
Lawrence et al. [LBAD∗06] represent a spatially-varying (SV)
measured materials as an inverse shade tree, decomposing it into
spatial structure and basis BRDFs to facilitate editing through ex-
tracted "1D curves" representing physical directions. Ben-Artzi et
al. [BAOR06, BAEDR08] proposed a fast iteration editing frame-
work of material "in situ", allowing to efficiently visualize global
illumination effects. Lepage et al [LL11] proposed material matting
to decompose measured SV-BRDF into layers for spatial editing.
More recently, Serrano et al. [SGM∗16] and Shi et al [SWSR21]
proposed designing perceptual spaces for more intuitive BRDF
editing and Hu et al. [HGC∗20] proposed encoding the BRDF in a
deep network, reducing its dimensionality and simplifying editing.
These methods target measured BRDF editing and focus on extract-
ing relevant dimensions (perceptual, spatial) along which globally
uniform edits can be made. As opposed to these methods, our ap-
proach targets spatially varying analytical model editing, enabling
complex spatial detail transfer.

Analytical BRDFs represent materials based on pre-
determined models (e.g Cook-Torrance [CT82], Phong [Pho75],
GGX [WMLT07a], etc.) and their parameters. To explore this
parameter space, Ngan et al. [NDM06] propose an interface to nav-
igate different BRDF properties with perceptually uniform steps
and Talton et al. [TGY∗09] leverage a collaborative space to define
a good modeling space for users to explore. Image-space editing
was also explored with gloss editing in lightfields [GMD∗16] and
material properties modification [ZFWW20]. Recently, different
methods were proposed to optimize or create procedural materi-
als [HDR19, SLH∗20, HHD∗22]. While procedural materials are
inherently editable, they are limited to the expressivity of their
node graphs and are difficult to design. More closely related to our
approach are image-guided material properties and style transfer.
Fiser et al. [FJL∗16] used drawing on a known shape (sphere)
to transfer the style and texture to a more complex drawing.
Deschaintre et al. [DDB20] proposed using a surface picture and
material exemplars to create a material with the surface picture
structure and exemplar properties. Recently, Rodriguez-Pardo et
al. [RPG22] proposed leveraging photometric inputs to transfer
material properties annotated on a small region to larger samples.
As opposed to these methods our approach transfers the appear-
ance and texture micro and meso structures from photo(s) to a
pre-existing analytical SVBRDF.

2.2. Style Transfer

We formulate our by-example control on material maps as a mate-
rial transfer problem. In recent years, neural style transfer [GEB16]
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and neural texture synthesis [GEB15] have been used in a vari-
ety of contexts (e.g. sketching [TTK∗21,SJT∗19], video [JvST∗19,
TFK∗20], painting style [TFF∗20]). These methods are based on
the matching of the statistics extracted by a pre-trained neural
network between output and target images. For example, Gatys
et al. [GEB15, GEB16] leverage a pre-trained VGG neural net-
work [SZ15] to guide style transfer, using the Gram Matrix of ex-
tracted deep features from the image as their statistical representa-
tion. Heitz et al. [HVCB21] described an alternative sliced Wasser-
stein loss as a more complete statistical description of extracted
features. Different approaches proposed to train a neural network
to transfer style of images or synthesize textures in a single for-
ward operation [JAFF16, ULVL16, HB17, ZZB∗18]. These meth-
ods however focus on the transfer of the overall style of images and
do not account for details. Domain specific (faces) and guided style
transfer have been proposed [KSS19, HZL19] to better control the
process and transfer style between semantically compatible parts of
the images.

In the context of materials, Nguyen et al. [NRM∗12] proposed
transferring the style or mood of an image to a 3D scene. They pose
this problem as a combinatorial optimization of assigning discrete
materials, extracted from the source image, to individual objects in
the target 3D scene. Mazlov et al. [MMTK19] proposed directly
applying neural style transfer on material maps in a cloth dataset
using a variant of RGB neural style transfer [GEB16].

In contrast to this previous work, we focus on transferring micro-
and meso-scale details from photos onto 2D material maps and en-
able transfer spatial control. In particular, we differ from Mazlov et
al. [MMTK19] in our inputs. Our style examples are simple pho-
tographs, easily captured or found online. Our approach allows us
to deal with the ambiguity of the material properties in the target
photo through material priors and differentiable rendering while
preserving the input material map structure and eventual tileabil-
ity.

2.3. Procedural Material Modeling

As mentioned, procedural materials are inherently editable as they
rely on parametrically controllable procedures. Recent work on in-
verse procedural material modeling [HDR19, GHYZ20, SLH∗20,
HHD∗22] aim at reproducing material photographs, but are still
limited to simple or existing procedural materials. While editable,
these models remain challenging to create and their optimization
relies on the expressiveness of the available procedural materials,
with no guarantee that a realistic model exists [HDR19, SLH∗20].
Often procedural materials can look synthetic because they are not
complex enough. In such cases, our method can augment the mate-
rial appearance by transferring detailed real materials onto the syn-
thetically generated material maps, while preserving their tileabil-
ity. In this context, Hu et al. [HDR19] proposed to improve the
quality of fitted materials through a style augmentation step, but
style was only transferred to the final rendered images and did not
impact the material maps themselves.

2.4. Material Acquisition

As an alternative to material transfer, one could directly capture
the target material. Classical material acquisition methods require
dozens to thousands of material samples to be captured under con-
trolled illuminations [GGG∗16]. Aittala et al. [AAL16] proposed
using a single flash image of a stationary material to reconstruct
a patch of it through neural guided optimization. Recently, deep
learning was used to improve single [LDPT17,DAD∗18,HDMR21,
GLT∗21, ZK21] and few-images [DAD∗19, GSH∗20, GLD∗19,
YDPG21] material acquisition. These methods recover 2D material
maps based on an analytical BRDF model e.g. GGX [WMLT07b].
As they mainly focus on acquisition, they do not enable control.
As opposed to these methods, our approach provides a convenient
way to control the appearance of material maps, leveraging the in-
put material to retain high quality, allowing for multi-target control
and preserving important properties such as tileability. Addition-
ally, our method does not require a flash photograph as target, al-
lowing the use of internet-searched references.

3. Method

Our method transfers fine-scale details from user-provided target
material photos onto a set of material maps. The material maps con-
tain diffuse albedo, normal, roughness and specular albedo proper-
ties, encoding parameters for a GGX [WMLT07b] shading model.
Since fine-scale details are typically underdefined by single-view
photos, we choose to leverage a specialized prior that regularizes
the transfer of materials details to ensure our material maps remain
realistic and to help disambiguate unclear material properties in the
target photo.

As prior, we train a tileable version of MaterialGAN [GSH∗20]
using a large dataset of synthetic material maps. This prior is de-
scribed in Section 3.1. We transfer material appearance by opti-
mizing our material maps in the latent space of this tileable Materi-
alGAN, rather than directly in pixel space. A differentiable GGX
shading model renders the optimized material maps into an im-
age where they are compared to the target photos. This appearance
transfer approach is described in Section 3.2. In Section 3.3, we
describe how we add spatial control over the appearance transfer
and enable transfer from multiple targets using label maps and a
resampled version of the sliced Wasserstein loss [HVCB21].

3.1. Tileable MaterialGAN

MaterialGAN [GSH∗20] has been shown to be a good prior for
lightweight material acquisition. However, the original Material-
GAN, based on StyleGAN2 [KLA∗20], is not designed to pro-
duce tileable outputs. It has slight artifacts on the borders, even
if the training data is perfectly tileable. Moreover, material maps
in most of publicly available material datasets [DAD∗18, DDB20]
are not tileable. To address this limitation, we modify StyleGAN’s
architecture following recent insights in GAN designs [KAL∗21,
ZHD∗22] to ensure tileability of the synthesized material maps,
even if the training data is not tileable. Specifically, we prevent the
network from processing the image borders differently from the
rest of the image, by modifying all convolutional and upsampling
operations with circular padding.

© 2022 The Author(s)
Computer Graphics Forum © 2022 The Eurographics Association and John Wiley & Sons Ltd.



Y. Hu, M. Hašan, P. Guerrero, H. Rushmeier & V. Deschaintre / Controlling Material Appearance by Examples

Init. Per-pixel Ours Target

Figure 2: Comparison between optimizing the material maps in
pixel space and our approach, optimizing in the latent space of
tileable MaterialGAN. Insets show the material maps used to ren-
der each image and Target is a photograph representing the desired
appearance. Per-pixel optimization frequently gets trapped in local
minima and suffers from artifacts and light-baking, while our use
of a prior allows to reach the desired appearance.

Once we enforce the generator network to always produce
tileable outputs, we cannot show tileable synthesized and non-
tileable real data to the discriminator, as it would have a clear sig-
nal to differentiate them. Instead, as suggested by [ZHD∗22], we
randomly crop both real and synthesized material maps. The dis-
criminator cannot identify whether the crop comes from a tileable
source or not, and instead has to identify whether the crop content
looks like a real or fake material.

We train our model with the same loss functions as StyleGAN2
[KLA∗20] including cross-entropy loss with R1 regularization and
path regularization loss for generators. See Sec. 4 for training de-
tails. With the trained tileable material prior, our material transfer
method overcomes the local minimum problems caused by simple
per-pixel optimization (Fig. 2) and reconstructs high-quality mate-
rial maps compared to an adaption of Deep Image Prior (Fig. 12). In
Fig. 3, we show our modified network architecture can successfully
preserve tileability after transfer compared to the original Materi-
alGAN. Importantly, the preserved tileability allows us to directly
apply our transfer materials on different objects seamlessly in a
large-scale scene as shown in Fig. 1.

3.2. Neural Material Transfer

In previous work, Hu et al. [HDR19] proposed an extra style aug-
mentation step to add realistic details on their fitted procedural
materials given a photo as target. However, their transfer is only
applied to the rendered images and does not modify the material
maps, limiting the impact of their transfer step (e.g. the material
can not be relit). Different from their method, we directly transfer
the target photo(s) material appearance onto material maps, allow-
ing the use of the new material in a traditional rendering pipeline.

Given a set of input material maps M0 and a user-provided target
image I, we compute the transferred material maps M as follows:

argmin
M

d0(R(M), I)+d1(M,M0) (1)

where R is a differentiable rendering operator, rendering mate-
rial maps M into an image. d0(R(M), I) measures the statistical

similarity between the synthetic image R(M) and target image I.
d1(M,M0) is a regularization term that penalizes the structure dif-
ference between transferred material maps M and the original in-
put M0. The lighting used in R can easily be adapted if needed to
roughly match the lighting conditions of target images. However,
we found that a simple co-located point light works well in the ex-
amples we tested. Similar to neural style transfer and neural texture
synthesis, we apply a statistics-based method to measure the simi-
larity for d0 and d1. Common choices for d0 and d1 are style loss
and feature loss [GEB15]. However, simply performing per-pixel
optimization on material maps M (i) fails to reach the appearance
of the target photograph. This is caused by challenging local min-
ima in the optimization and a high sensitivity to the learning rate,
requiring careful tuning (see Figure 2). And (ii) the optimization
may result in departure from the manifold of realistic materials.
Instead, we take advantage of the learned latent space of our pre-
trained tileable MaterialGAN to regularize our material transfer,
effectively solving these problems.

We tackle the material transfer challenges in two steps. First, we
project the input material maps M0 into the latent space of the pre-
trained MaterialGAN model f by optimizing the latent code θ. The
optimization is guided by L1 loss and feature loss:

Lθ = || f (θ)−M0||1 + ||F( f (θ))−F(M0)||1 (2)

where F is a feature extractor using a pre-trained VGG net-
work [SZ15]. With the projected latent vector, we perform mate-
rial transfer by optimizing θ to minimize the statistical difference
between rendered material R( f (θ)) and the material target I

Lθ = ||S(R( f (θ)))−S(I)||1 + ||F( f (θ))−F(M0)||1 (3)

The statistical descriptor S, the style loss, can be implemented in
different ways. The Gram Matrix [GEB15] is a commonly used
statistical loss. Recently, Heitz et al. [HVCB21] proposed a sliced
Wasserstein loss to measure a more complete statistical difference,
taking additional statistical moments into consideration. Their im-
plementation however relies on comparing signals (here images)
with the same number of samples (here pixels). To remove this lim-
itation, we propose using uniform resampling to balance the num-
ber of samples in both distributions to facilitate spatial control and
multi-target transfer (Sec. 3.3). We derive in supplemental material
a slightly slower but better grounded sliced Cramér loss, comparing
the distribution CDFs rather than PDFs.

3.3. Spatial Control and Multi-target Transfer

The sliced Wasserstein loss has been shown to be a good statis-
tical metric [HVCB21] to compare deep feature maps, but does
not allow comparing feature maps with different numbers of sam-
ples (pixels) trivially. The "tag" trick introduced in the original
paper cannot be applied to our goal for multi-target transfer. The
sliced Wasserstein loss compares two images by projecting per-
pixel VGG feature vectors onto randomly sampled directions in
feature space, giving two sets of 1D sample points u and v, one for
each image. These are compared by taking the difference between
the sorted sample points. To allow for different sample counts
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Input/Target Original MaterialGAN Ours

Figure 3: The original MaterialGAN model does not produce
tileable results, leading to visible seams on the boundary when
tiled, while our tileable network preserves the input tileability with-
out artifacts (Ours). Seams are particularly visible when zoomed
in.

Figure 4: For our multi-target transfer, we transfer the appearance
of two targets to the same input material. A binary map on the input
material defines which of the two targets should be used for each
pixel. Additionally, a binary map can be defined on each target de-
fines which regions should be included in the appearance transfer.
Here we transfer the appearance from the black region of the mask
of the top target to the black regions on the input mask. The white
regions are similarly transferred from the bottom target. This bi-
nary system is only used for visualization. There is no limit to the
number of correspondences that can be made.

|u|< |v|, we introduce the resampled sliced Wasserstein loss as:

LSW1D(u,v) =
1
|u| ||sort(u)− sort(U(v))||1 (4)

where U(v) is an operator that uniformly random subsamples a vec-
tor to obtain |u| samples from v. Note here we compute L1 error
as opposed to squared error suggested in the original paper as we
found it to perform better.

Using this resampling approach, we can compute statistical dif-
ferences between labeled regions of different size. Assume we have
label maps associated with material maps and each target photo,
we define our transfer rule as Label X: Target Y, Z which means
to transfer material appearance from regions labeled by Z in tar-
get photo Y onto regions labeled by X in the input material maps.
We show examples of how to define the label in Fig. 4. The sliced
Wasserstein loss will be computed between deep features on each
labeled regions. Without loss of generality, we extract a deep fea-
ture pl and p̂l from layer l on the rendered image R(θ) and one of
the material target Î. Similar to [HVCB21], we randomly sample N
directions V ∈ SNl and project features pl and p̂l onto the sampled
directions to get projected 1D features pl

V and p̂l
V .

Now suppose we have a transfer rule Label i: Target Î, j, in-
structing us to transfer materials from regions labeled by j in Î to re-
gions labeled by i in the rendered image R(θ). We take samples la-
beled with i from pl

V and samples labeled with j from p̂l
V as pl

V {i}
and p̂l

V { j}. Note here pl
V {i} and p̂l

V { j} usually contain different
number of samples, therefore we compute the sliced Wasserstein
loss using our proposed resampling technique (Eq. 4). We compute
this loss for each transfer rule separately and take their average as
our final loss. For completeness, we also evaluate the Gram Ma-
trix [GEB∗17] for partial transfer and show that it can lead to arti-
facts as shown in Fig. 6. We therefore adopt sliced Wasserstein loss
with resampling in all our experiments.

A particular case is made of the boundary features, as neurons
on the labeled boundary will have a receptive field which crosses
the boundary due to the footprint of the deep convolutions, forc-
ing them to consider statistics from irrelevant nearby regions. To
prevent transferring unrelated material statistics, similar to Gatys
et al [GEB∗17], we perform an erosion operation on the labeled re-
gions, and only evaluate the sliced Wasserstein loss on the eroded
regions. Fig. 5 shows an example with and without this erosion
step. We note that while an erosion step reduces irrelevant texture
transfer, too large an erosion may remove all samples from the dis-
tribution at deeper layers. In such case, we do not compute the loss
for deeper layers with no valid pixels.

4. Implementation Details

We implement our algorithm in PyTorch for both training and op-
timization. We train our tileable MaterialGAN model using a syn-
thetic material dataset containing 199,068 images with a resolu-
tion of 288x288 [DAD∗18]. The material maps are encoded as 9-
channel 2D images (3 for albedo, 2 for normal, 1 for roughness
and 3 for specular). The full model is trained by crops: we train
the generator to synthesize 512x512 material maps and we make
a 2x2 tile (1024x1024) and randomly crop to 256x256 to compare
with the randomly cropped 256x256 ground truth material maps.
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Init. Target

W/o Erosion With Erosion
Figure 5: We show the importance of applying erosion on label
maps. When computing appearance features at boundary pixels of
the label map, the receptive field extends beyond the boundary.
Therefore without erosion, the transferred appearance would in-
clude regions outside the label mask. Erosion of the binary masks
makes sure the appearance features only include information inside
the masked region, preserving the desired appearance.

Input Target0 Target1

Guided Gram Matrix Sliced Wasserstein Loss
Figure 6: For our multi-target transfer, we evaluate a Guided Gram
Matrix which leads to artifacts which do not appear with our re-
sampled Wasserstein loss. We hypothesize that these artifacts ap-
pear because the Guided Gram Matrix remains impacted by the
statistics of target bricks borders despite the erosion we perform.

Render Albedo Normal Roughness Specular

G
T

W
W

+
W

+
N

Figure 7: We show projection results when optimizing Eq. 2 with
three different latent space of tileable MaterialGAN: W, W+ and
W+N. We see that we can only capture both large and small scale
structures using W+N, while W, W+ either fail to approximate the
detail appearance or miss fine scale structures.

The architecture of the GAN model ensure tileability (Sec. 3.1),
despite the crops being not tileable. For important hyperparame-
ters, we empirically set γ = 10 for R1 regularization and weight
of path length regularization as 1 [KLA∗20]. We train the network
using an Adam optimizer (β = (0.9,0.999)) with a learning rate of
0.002 on 8 Nvidia Tesla V100 GPUs. The full training takes 2∼3
days with a batch size of 32.

We run experiments on our optimization-based material transfer
on an Intel i9-10850K machine with Nvidia RTX 3090. The op-
timization is built on the pre-trained tileable MaterialGAN model
as a material prior. Specifically, MaterialGAN has multiple latent
spaces: z ∈ Z, the input latent code; w ∈ W , the intermediate la-
tent code after linear mapping; per-layer style code w+ ∈ W+;
and noise inputs for each blocks n ∈ N. In previous work, dif-
ferent latent codes have been proposed for various applications
[KAH∗20, GSH∗20]. In our experiments, we optimize both W+

and N, enabling our optimization to capture both large-scale struc-
ture and fine-scale details. In Fig. 7, we show projection results
(Eq. 2) only by optimizing W or W+. Results show that W is less
expressive, while W+ can capture large scale structures, but misses
fine scale structures.

For the projection step, we run 1000 iterations with an Adam
optimizer with a learning rate of 0.08, taking around 5 minutes. We
extract deep features from [relu1_2, relu2_2, relu3_2, relu4_2] in
a pre-trained VGG19 neural network to evaluate the feature loss in
Eq. 2. As we find the projection of the details in the normal map
to be harder than for other maps, we assign a weight of 5 to the
normal maps loss while 1 for other material maps.

After projection, we optimize the embedded latent code θ to
minimize the loss function in Eq. 3. Similar to style transfer, we
take deep features from relu4_2 to compute feature loss, and ex-

© 2022 The Author(s)
Computer Graphics Forum © 2022 The Eurographics Association and John Wiley & Sons Ltd.



Y. Hu, M. Hašan, P. Guerrero, H. Rushmeier & V. Deschaintre / Controlling Material Appearance by Examples

tract deep features from layers [relu1_1, relu2_1, relu3_1, relu4_1]
to compute the sliced Wasserstein loss. We weigh style losses from
different layers by [5, 5, 5, 0.5] respectively, emphasizing local fea-
tures. To compute the sliced Wasserstein loss, we sample a num-
ber of random projection directions equal to the number of chan-
nels of the compared deep features as suggested in the original pa-
per [HVCB21]. We run 500 iterations using an Adam optimizer
with a learning rate of 0.02, taking about 2.5 minutes.

For spatial control, if the input material maps come from a pro-
cedural material [Ado22b], the label maps can be extracted from
the graph. For target photos, we compute the label maps with a
scribble-based segmentation method [HHD∗22], which takes less
than a minute overall. However, a precise and full segmentation of
the example photos is not always necessary: users only need to in-
dicate a few example regions of the material they want to transfer.
We apply an erosion operation on each resampled label map with
a kernel size of 5 pixels for 512x512 images as described in Sec.
3.3. This erosion size may need to be adapted for different image
resolutions.

5. Results

We present single-target material transferred results including ma-
terial maps and tiled renders in Fig. 8, showing that our method can
faithfully transfer realistic details from real photographs to material
maps thanks to material prior provided by our modified Material-
GAN, preserving the tileability of input materials. We also show
multi-target transfer results in Fig. 9 where we are able to transfer
material appearance from separate regions from multiple sources.
As with a single target, the new material maps preserve tileability
allowing to directly use them for texturing. Please see our supple-
mental material for more results with dynamic lighting.

5.1. Applications

Using our material transfer method, we demonstrate different ap-
plications:

Material Augmentation. Our method can augment existing
material maps based on input photos. This is particularly use-
ful for augmenting procedural materials which are difficult to de-
sign realistically. As shown in Fig. 10, our method can be ap-
plied to minimize the gap between an unrealistic procedural ma-
terial and a realistic photo, which can be used as an complementary
method for existing inverse procedural material modeling systems
[HDR19, SLH∗20].

By-example Scenes Design. As our approach ensures tileabil-
ity after optimization, the transferred material maps can be directly
applied to texture virtual scenes smoothly. Fig. 1 shows such an
application scenario. Given photographs as exemplars, our method
transfers realistic details onto simple-looking materials. With our
transferred material maps, we can texture and render the entire
scene seamlessly.

5.2. Comparison

As we cannot compare to traditional style transfer methods since
they operate on the image to image domain, we evaluate the benefit

of the material prior used in our optimization and compare to two
alternative optimization approaches, evaluating a simple per-pixel
image style transfer combined with differentiable rendering and us-
ing a deep image prior [UVL18]. We also evaluate a direct single
image material acquisition using MaterialGAN on target images
and show that the input material regularizes the result.

5.2.1. Per-pixel Optimization and Deep Image Prior

As discussed in Sec. 3.1, directly performing per-pixel optimiza-
tion on material maps leads to numerous local minima, resulting
in artifacts. The optimization is also very sensitive to initialization
and learning rate (Fig. 2), and loss is prone to diverge if the hyper-
parameters are not tuned well.

Deep Image prior [UVL18] is another way to regularize opti-
mization. The image is reparameterized by a neural network, help-
ing to overcome potential local minima. We adapt this idea to our
material transfer optimization. As described in the original paper,
we use a U-net-like architecture to generate a stacked 9-channel
materials map, using a 9-channel set of randomly initialized noise
maps as input. During the optimization, the parameters of this net-
work will be optimized while the input noise map is fixed. Different
from the original paper, we do not optimize from scratch but first
fit the generator network to our input material maps using Eq. 2,
otherwise the optimization cannot recover the structure of the input
material maps. After fitting the neural network, we perform the ma-
terial transfer as described in Eq. 3. Fig. 12 shows an optimization
result generated using this deep image prior version. The neural
network prior helps address the local minimum problem encoun-
tered in the per-pixel optimization, but its lack of prior on tileable
materials results in artifacts and does not preserve tileability. In par-
ticular we see in Fig. 12 that the result looks good with a frontal
lighting, but shows significant green coloration when tiled or with
varying light.

5.2.2. Comparison to Material Acquisition

Our material transfer algorithm is not a material acquisition method
because we do not aim at faithfully reconstructing the per-pixel
material properties of a single material, but rather to transfer ap-
pearance statistics of one or more photographs to the input maps.
However, as shown in Fig. 11, compared to a per-pixel material
acquisition approach, our optimization is regularized by the initial-
ization with the original material, preventing it from overfitting to
a single light/view configuration.

6. Discussions, Limitations and Future Work

Our material transfer provides an efficient approach to control and
augment appearance of material maps, showing good transfer re-
sults in different scenarios with various targets. Our method how-
ever fails to find implicit correspondences between input material
maps and target photograph in the case of very different patterns
or scales, without explicit spatial guidance (Sec. 3.3), as shown in
Fig. 13a. In case of strongly conflicting material properties in the
source material and target photo(s), our method tends to mix them.
As shown in Fig. 13b, if we transfer a photo of a rough marble tex-
ture to a pure metallic material, our method mixes their material
parameters.
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Figure 8: Material Transfer Results. All target images are real photographs. We show each material map (512x512) before and after opti-
mization. We also show a 2x2 tiled rendered image (1024x1024) using our transferred material maps. The optimized material maps have the
same large-scale structure as the input material maps but now share the material appearance of the target photo. We see that our transfer
does not only modify the diffuse albedo, but can modify various properties when required.
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Figure 9: Multi-target material transfer results of our algorithm from regions in multiple targets to regions in the input material. The
newly created material maps remain tileable and can be directly used for content creation. The inset color label maps show the transfer
correspondence: we transfer material appearance from and onto regions with same color.

Target Hu et al. 2019 Our augmented

Target MATch Our augmented
Figure 10: Augmenting inverse procedural results. The procedu-
ral materials shown here (middle column) are generated by inverse
procedural modeling method [HDR19,SLH∗20], but depending on
the expressivity of the procedural models, the fitted/optimized mate-
rial often looks unrealistic. Our method can be applied to improve
the realism and augment details of procedural materials generated
maps, to better match a target appearance.

As shown in Fig. 14a, to roughly control the impact of the of
statistics we want to transfer, we can adjust weights between fea-
ture loss d0 and style loss d1. Precise control of the scale at which
transfer happens is more challenging. In Fig. 14b, we experiment
with transferring statistics from a single VGG layer, showing the
different levels of transfer. This however doesn’t provide precise
transfer scale control. Empirically, we combine statistics from mul-
tiple layers (Sec. 4) to produce high-quality transfer.

Another limitation of the method comes from the use of a tileable

Input MaterialGAN MaterialGAN(20◦)

Target Ours Ours(20◦)

Figure 11: While we do not aim at reconstructing exact per-pixel
material parameters given a photograph, direct single acquisition
method could be used when the input material structure is not im-
portant. MaterialGAN [GSH∗20] achieves high quality per-pixel
result on the optimized view but over-fit to it, leading to heavy qual-
ity loss under other light-view settings (20◦). Our approach does
not suffer from this thanks to the regularization provided by the in-
put material.

MaterialGAN which is trained at a fixed resolution. Though its base
architecture, StyleGAN, has shown great results up to 1K resolu-
tion images, the model does not yet trivially support super-high
resolution materials used in large entertainment productions (4K to
8K).

Finally, we use a Cook-Torrance-like material representation,
limiting the materials that can be modelled to opaque surfaces,
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Target Input

Deep Image Prior Tiled(2x2)

Ours Tiled(2x2)
Figure 12: We compare our MaterialGAN prior with a material
transfer based on Deep Image Prior [UVL18]. Compared to a per-
pixel optimization, the Deep Image Prior helps avoid local minima
to reach the target appearance. However, without material prior
and explicit tileable design, Deep Image Prior fails to preserve
tileability and to generate view/lighting consistent result. This is
illustrated here by the remaining green grass appearing when light-
ing is not exactly the same as during the optimization.

and requiring example photographs under roughly known condi-
tions (e.g flash or sun). An interesting future direction is to explore
more complex material effects and allowing material transfer from
non-planar in-the-wild objects example.

7. Conclusion

We design a novel algorithm to control the appearance of 2D ma-
terial maps through material appearance transfer. For high-quality
material transfer, we train a tileable MaterialGAN, leveraging its
learned space as an optimization prior and differentiable render-
ing to use simple photographs as target appearance. We intro-
duce spatial control with multi-target transfer using a resampled
sliced Wasserstein loss and show complex by-example control and
augmentation. The newly-synthesized material maps can be used
seamlessly in any virtual environment. We believe our approach
provides users with a new effective and convenient way to control
the appearance of material maps and create new materials, improv-
ing the toolbox for virtual content creation.
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Figure 13: Limitation: (a) when input material maps and target
photos have very different structures or scale, without spatial guid-
ance (label maps), our method cannot find a good way to transfer
the high frequency statistics. (b) In the case where the target photo
and input material maps have strongly conflicting material proper-
ties (here roughness), our method will result in mixed parameters.
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