Supplemental Document: Generating Procedural Materials from Text or

Image Prompts

YIWEI HU, Yale University, USA and Adobe Research, USA

PAUL GUERRERO, Adobe Research, UK

MILOS HASAN, Adobe Research, USA

HOLLY RUSHMEIER, Yale University, USA
VALENTIN DESCHAINTRE, Adobe Research, UK

ACM Reference Format:

Yiwei Hu, Paul Guerrero, Milos Hasan, Holly Rushmeier, and Valentin De-
schaintre. 2023. Supplemental Document: Generating Procedural Materials
from Text or Image Prompts. In Special Interest Group on Computer Graphics
and Interactive Techniques Conference Conference Proceedings (SIGGRAPH 23
Conference Proceedings), August 6-10, 2023, Los Angeles, CA, USA. ACM, New
York, NY, USA, 7 pages. https://doi.org/10.1145/3588432.3591520

1 OVERVIEW

In this supplementary material, we provide implementation details
and show additional results and comparisons. In Sec. 2, we show
more conditional generation results and a comparison to the original
MatFormer from our unconditional version. In Sec. 3, we provide
additional implementation details for the generative models, dataset
processing and graph sequence sampling. In Sec. 4, we discuss al-
ternative implementations i.e. another image encoding method and
another parameter generator architecture.

2 ADDITIONAL RESULTS.
2.1 Statistical Analysis

We present a detailed statistical analysis of our quantitative com-
parisons. We define our metric, the style loss, as a combination of
L1 difference between the Gram Matrices of VGG19 activations [Si-
monyan and Zisserman 2015] and 16x16 downsampled thumbnails
(a = 0.1) of the image prompt I and the node graphs g(6) after
evaluation:

L =|GM(I) — GM(R(g(0))Il1 + alllisx16 — R(9(0))16x16ll1 (1)

where GM is an operator that computes Gram Matrices of the VGG
features extracted from the image, and R is an rendering operator
that renders the material maps on a planar surface. In addition to the
mean loss among all test samples, we report and plot the 95% confi-
dence intervals as shown in Table 1 and Fig. 1. This confirms that
our models 1) show a significant improvement before optimization,
and 2) perform on par with baselines after optimization.

Permission to make digital or hard copies of part or all of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for third-party components of this work must be honored.
For all other uses, contact the owner/author(s).

SIGGRAPH °23 Conference Proceedings, August 6—10, 2023, Los Angeles, CA, USA

© 2023 Copyright held by the owner/author(s).

ACM ISBN 979-8-4007-0159-7/23/08.

https://doi.org/10.1145/3588432.3591520

2.2 Multi-Modal Conditioning

Conditional generation. We show a more extensive set of image
conditioning, text conditioning and autocompletion results in Fig-
ures 3, 4 and 5, respectively. Visualizations of the graphs correspond-
ing to these results can be found the zip file.

Unconditional generation. In Fig. 7, we show that our substan-
tially augmented dataset and regularized sampling process benefits
unconditional material graph generation as well. We train an uncon-
ditional version of our model and compare it to the unconditional
model presented in MatFormer. Our unconditional model generates
material graphs with a more diverse appearance. For example, note
the larger range of different patterns and structures produced by
our generator.

2.3 Comparison to Class-conditioned Generation

We compare our approach to class-conditioned version of our gener-
ator, showing that our CLIP-based conditioned generation provides
more accurate information than a simple class.

During training, instead of conditioning on CLIP embeddings,
we make all the three generators conditional on material categories
using a learnable embedding layer which accepts category tokens as
inputs and transforms the tokens to the class embeddings. We use
the material categories associated to each graph in the Substance
Source Dataset [Adobe 2023] (16 different classes). We use the same
network architectures, configuration and hyperparameters as for
training our CLIP-conditional model, but use the class conditional
embedding. During inference, given an input image, we first classify
this image into one of the 16 material categories using CLIP before
generating material graphs conditioned on the classified categories.

In Fig. 2, we show that our CLIP-based generative model per-
forms significantly better than simple class-conditioned generation
for matching the general material appearance (e.g. structures and
patterns). We show here the direct output of the network and do not
apply post optimization. We further conduct the same experiment
as in the main paper and report the statistics in Table 2, showing
that our CLIP-conditioned generation generates results closer to
the target than class-conditioned generation.

We believe that the existing color mismatch before optimization
is caused by the limited training data available, and by the difference
between image-space and parameter space error i.e., a relatively
small error in parameter space of the color results in a large error in
image space. Evaluating image-space loss during training/inference
is an interesting and challenging avenue for future work.

https://doi.org/10.1145/3588432.3591520
https://doi.org/10.1145/3588432.3591520

SIGGRAPH ’23 Conference Proceedings, August 6-10, 2023, Los Angeles, CA, USA

Hu et al.

Table 1. In addition to the mean loss values reported in the main paper, we report the [lower bound, upper bound] of 95% confidence intervals of computed

loss values. See Fig. 1 for a visualization.

Unoptimized Ours Ours (VGG) Ours Uncond Dataset
Best-of-5 0.0314[0.027,0.036] 0.0300[0.026,0.034] 0.0382[0.033,0.043] 0.0384[0.033,0.043]
Avg-of-5 0.0346[0.030,0.039] 0.0329[0.029,0.037] 0.0539[0.048,0.060] 0.0499[0.044,0.055]

Optimized Ours Ours (VGG) Ours Uncond Dataset
Best-of-5 0.0218[0.018,0.025] 0.0199[0.016,0.023] 0.0194[0.016,0.023] 0.0191[0.015,0.023]
Avg-of-5 0.0242[0.020,0.028] 0.0221[0.018,0.026] 0.0227[0.019,0.027] 0.0237[0.019,0.028]

Unoptimized (Best-of-5) Unoptimized (Avg-of-5

Optimized (Best-of-5) Optimized (Avg-of-5)

)
0.043 0.060
0.040 0.055
0.038 0.050 [

0.024

0.026
0.022

0.024
0.020

0.028

0.035 0.045
0.033 0.040 0.022
o 0.018
0.030 * 0.035 T 0.020
0.028 1 0.016 R
0.030 0.018
ours Ours (VGG) Ours Uncond ~ Dataset ours Ours (VGG) Ours Uncond ~ Dataset ours Ours (VGG) Ours Uncond ~ Dataset ours Ours (VGG) Ours Uncond ~ Dataset

Fig. 1. Plots of 95% confidence intervals of quantitative results. Lower is better. Left to Right: Unoptimized (Best-of-5), Unoptimized (Avg-of-5), Optimized
(Best-of-5) and Optimized (Avg-of-5). Our method shows a significant improvement over the query baselines before optimization, and performs on par with
baselines after optimization as they seem to improve more from the optimization step.

Table 2. We report the style loss measured over our test set of real image
data, similar to what is shown the main paper (similar to the unoptimized re-
sults shown in Table 1). We report the mean loss values as well as the [lower
bound, upper bound] of 95% confidence intervals. Our model shows statisti-
cally significant improvement over class-conditioned generation. Lower is
better.

Unoptimized Ours Class-conditioned
Best-of-5 0.0314[0.027,0.036] 0.0544[0.048,0.060]
Avg-of-5 0.0346[0.030,0.039] 0.0774[0.071,0.084]

2.4 Visual Comparisons to Baselines

We show additional qualitative comparisons to baselines in Fig.
6, demonstrating our model’s capability to reproduce material ap-
pearance similar to querying a huge pre-generated dataset (102,400
materials for Ours Uncond and 466,700 for Dataset), while having
a memory footprint that is 4-5 orders of magnitude smaller than
the memory required for dataset retrieval (15 MB for our model
compared to 115 GB or more required for dataset retrieval).

3 IMPLEMENTATION DETAILS
3.1 Generative Model Details

Below we describe the graph linearization, auxiliary tokens, and aux-
iliary input sequences used by each of our generative models. Unless
otherwise noted, these are the same as in MatFormer[Guerrero et al.
2022].

Graph linearization. We use a back-to-front breadth-first traversal
of a node graph to obtain the order for our sequences. This traversal
starts at the output nodes and moves from child to parent in a
breadth-first order. As shown in MatFormer, this results in a more

canonical linearization than other order strategies, such as front-to-
back ordering. One exception is autocompletion, where we use a
front-to-back breadth-first traversal, as the nodes given by the user,
which are typically at the start of the graph, should form the start
of the node sequence.

Node generation. During node generation, we train the model to
output the node depth (the graph distance of a node from the closest
output node) in addition to the node type. The depth of previously
generated nodes is then used as auxiliary input sequence to give
the model more information about the rough position of the node
in the graph. In total, the node model uses 3 input sequences:

o the sequence of previously generated node types;
o the sequence of previously generated node depths;
o the global position of a token in the node sequence.

We only use two auxiliary tokens per sequence that denote the start
and end of a sequence, unlike MatFormer, which also uses auxiliary
tokens to denote the end of a set of child nodes in the breadth-first
order. We did not use these additional tokens used by MatFormer
as we found that they did not increase our performance.

Edge generation. The edge model generates tuples of pointers
into a list of input or output slots. It is implemented as a Pointer
Network [Vinyals et al. 2015] that consists of a transformer encoder
and a transformer decoder. The transformer encoder outputs a list
of slot embeddings, while the transformer decoder outputs a query
feature vector in each step. The affinity of the query feature vector
with each slot embedding, computed as a dot product, determines the
probability that an edge starts or ends in this slot. The transformer
encoder uses 5 input sequences to describe a slot:

o the operator type of the slot’s node;
o the index of the node;

Supplemental Document: Generating Procedural Materials from Text or Image Prompts

Input Generated Graphs

Class-cond

o
232
<]
O
@
2]

Kuf

O

Marble - Granite

Class-cond

Fig. 2. Comparison to class-conditioned generation. We show predicted
material graphs without post optimization. The first two examples are
synthetic materials while the last two are real photographs. For the class-
conditioned generation, we generate graphs conditioned on the classified
material categories (below each image prompt) using CLIP. Though color
differences exist, our conditional model matches the input images much
better compared to simple class-conditioned generation.

o the node depth;
o the index of the slot inside the node;
o the global position of a token inside the slot sequence.

SIGGRAPH ’23 Conference Proceedings, August 6-10, 2023, Los Angeles, CA, USA

The transformer decoder uses 3 input sequences to describe edge
start or end slots:

e the slot’s embedding;

o the tuple index of a slot in the edge (i.e. 1 if the edge starts at
the slot, 2 if it ends at the slot);

o the global position of a token inside the edge sequence.

We use two auxiliary tokens per sequence that denote the start and
end of a sequence.

Parameter generation. The transformer encoder g* that computes
the node embeddings receives two input sequences, the node type
and the node depth, as output by the node generator. The parameter
model uses 7 input sequences:

o the sequence of previously generated parameter values;

o the sequence of node embeddings for the node each token is
generated for;

o the index of the parameter in the node, not counting skipped
parameters (parameters that are at their default values are
skipped during generation, to shorten parameter sequences);

e the index of the parameter in the node, counting skipped
parameters;

o the index of the array element for parameters that contain
arrays of values, or 0 if the parameter is not an array;

o the index of the vector element for parameters that are vectors,
or 0 if the parameter is not vector-valued;

o the global position of a token inside the parameter sequence.

We use auxiliary tokens that denote the start and end of the parame-
ter sequence. Unlike MatFormer, our parameter generator generates
all graph parameters as a single list. For this reason, we also use
auxiliary tokens that mark the start of the per-node parameter sub-
sequences.

3.2 Dataset Processing Details.

Reformatting. The raw dataset contains material graphs created
over several years, using different versions of the node graph sys-
tems. We first ensure that all material graphs are properly formatted.
Here is a checklist for dataset reformatting mentioned in our paper:

e Upgrade material graph to the latest version to resolve com-
patibility problems. The same type of node can have slightly
different implementations and behaviors in different versions
of node graph systems.

o Fix numerical precision problems with the bit depth in input
or output images of some nodes in the graph. Potential differ-
ences in the bit depth of input/output 2D images will affect
the precision of some nodes.

o Fix missing dependencies in some graphs. Each graph may
use other existing graphs as operators, in which case a de-
pendency to the existing graph is created. Some graphs had
incorrect dependencies that needed to be fixed.

e Enable alpha channels for all input and output images of
nodes in each graph. We found that some graphs require
alpha channels to give a correct output, and for the other
graphs using an alpha channel does not degrade the output
quality.

SIGGRAPH ’23 Conference Proceedings, August 6-10, 2023, Los Angeles, CA, USA

Input Images Generated Graphs Input Images

Generated Graphs

Hu et al.

Input Images Generated Graphs

Fig. 3. Conditioning on Real Images. We show real photos as inputs and the output of three of our generated material graphs.

3.3 Sampling Details

Semantic Validation. While MatFormer ensures semantic validity
as a post-processing step, once the entire sequence has been gen-
erated, we perform the validity checks during sampling, making

sure to choose only among semantically valid choices for any given
token. This makes sure that the chosen tokens are semantically
consistent with the previously generated tokens. Here, we list our
rules for validity checks during sampling:

Supplemental Document: Generating Procedural Materials from Text or Image Prompts SIGGRAPH 23 Conference Proceedings, August 6-10, 2023, Los Angeles, CA, USA

"denim fabric"

N

"animal skin tiger" "polished concrete"

"red glossy leather"

"shiny brushed aluminum"

"background texture rusty metal" "green glossy plaster wall paint" "tree bark"

"black shiny ceramic floor tiles"

\
<

"wooden panels birds ee maple"

"black slate flooring with white grout"

"brown matte leather"

AR o

=]

ntll -

crochet péttér’n"‘ "patterned paveme "wooden panels red oak"

Fig. 4. Text Conditioning. Our model generates multiple procedural material graphs given various text prompts.

SIGGRAPH ’23 Conference Proceedings, August 6-10, 2023, Los Angeles, CA, USA

Iniut Ima]es

Fig.5. Autocompletion. As a sequential model, our models can accept partial
sequences e.g., partially completed material graphs and generate the rest of
the structures and parameters toward given image prompts. Existing nodes
and edges are blue and our predicted nodes and are green.

o The generated node depth has to be monotonically increas-
ing/decreasing over a node sequence for back-to-front/front-
to-back node ordering.

o Each edge can only connect an output slot of a source node
to an input slot of a different target node. Additionally, edges
are not allowed to form cycles.

o Parameter values may only be sampled within the valid range
for a given parameter. Each parameter has a known minimum
and maximum. Additionally, a new parameter may not be
started if the current parameter is vector-valued and is still
missing some of its elements. This ensures that only complete
parameters are generated.

4 ALTERNATIVE IMPLEMENTATIONS

In this section, we introduce alternatives implementation of our
model mentioned in our main paper. We describe the details and
discuss their performance.

4.1 Alternative conditioning

Conditioning on CLIP embedding allows our model to accept both
image and text prompts as inputs, while other encoding methods
are possible. We experiment with an alternative image encoding
approach. While CLIP captures the high-level semantic information

Hu et al.

Input Images Top-5 Samples

Our Uncond Ours(VGG)

Dataset

Top-5 Samples

Input Images

Our Uncond Ours(VGG)

-
[}
7}
3
©
o

Input Images

o
[O]
2
2
=1
o
°
c
Q
o
=
o}
5
o

Dataset

Fig. 6. Here, we show more visual comparisons to our baselines. Our model
generates material graphs visual similar to a query in a giant database.

in an image, we would like to encode low-level texture statistics
to see if it can better capture lower-level details. We therefore add
VGG feature statistics to capture fine-scale texture detail and a 16x16
downsampled thumbnail to summarize the main color of the input
image. The VGG feature statistics we compute are based on the
layer-wise mean and standard derivation from extracted deep layer

Supplemental Document: Generating Procedural Materials from Text or Image Prompts

MatFormer

SIGGRAPH ’23 Conference Proceedings, August 6-10, 2023, Los Angeles, CA, USA

Ours

Fig. 7. We show that our augmented data processing and sampling pipeline helps improve unconditional graph generation. On the left are sampled material
graphs by MatFormer [Guerrero et al. 2022], which biases toward certain patterns and the wood category. On the right we show our results with a wider
variety of semantically-meaningful and more realistic appearances. In both cases, we unconditionally randomly sample 64 graphs.

features (ReLu2_1, ReLu3_1, ReLu4_1) of a pretrained VGG model.
We flatten and concatenate all the features and map the feature
vector to the dimension of hidden states by a trainable MLP. In the
main paper, we denote this variation as Ours(VGG) while our used
model as Ours. This alternative encoding produces slightly lower
numerical error as presented in the main paper, but its construction
is however slightly more complicated and prevents the use of text
encoding and we do not observe visible qualitative differences with
the CLIP-only encoding.

4.2 Alternative Parameter Generator

Our parameter generator is a graph-conditioned parameter genera-
tor using GCNs. Another choice of parameter generator is to extend
MatFormer’s parameter generator to accept conditional text or im-
age embedding. In this variant, the parameter generator generates
parameters for each node individually without GCN. To examine
the performance of our parameter generator with GCN, we create
a synthetic dataset containing 5120 graph/parameters data points.
We evaluate the model’s accuracy by cross entropy error on the
predicted tokens conditioning on ground-truth node and edge se-
quences. Our architecture gains marginal improvement with an
average error of 0.729 compared to 0.740 on predicted parameters.
Combined with a more parallelizable training (as we process per
graph rather than per node) leading to a 1.5x speedup in the training
time, we choose to use our graph-conditioned parameter generator
as part of our conditional model.

REFERENCES

Adobe. 2023. Substance Designer. https://www.substance3d.com/.

Paul Guerrero, Milos Hasan, Kalyan Sunkavalli, Radomir Mech, Tamy Boubekeur, and
Niloy Mitra. 2022. MatFormer: A Generative Model for Procedural Materials. ACM
Trans. Graph. 41, 4, Article 46 (2022). https://doi.org/10.1145/3528223.3530173

Karen Simonyan and Andrew Zisserman. 2015. Very Deep Convolutional Networks
for Large-Scale Image Recognition. In 3rd International Conference on Learning
Representations, ICLR 2015, San Diego, CA, USA, May 7-9, 2015, Conference Track
Proceedings, Yoshua Bengio and Yann LeCun (Eds.). http://arxiv.org/abs/1409.1556

Oriol Vinyals, Meire Fortunato, and Navdeep Jaitly. 2015. Pointer networks. Advances
in neural information processing systems 28 (2015).

https://doi.org/10.1145/3528223.3530173
http://arxiv.org/abs/1409.1556

	1 Overview
	2 Additional Results.
	2.1 Statistical Analysis
	2.2 Multi-Modal Conditioning
	2.3 Comparison to Class-conditioned Generation
	2.4 Visual Comparisons to Baselines

	3 Implementation Details
	3.1 Generative Model Details
	3.2 Dataset Processing Details.
	3.3 Sampling Details

	4 Alternative Implementations
	4.1 Alternative conditioning
	4.2 Alternative Parameter Generator

	References

