
Supplementary Material for COFS: COntrollable Furniture layout
Synthesis

Wamiq Reyaz Para

KAUST

Saudi Arabia

Paul Guerrero

Adobe Research

UK

Niloy J. Mitra

University College London and Adobe Research

UK

Peter Wonka

KAUST

Saudi Arabia

ABSTRACT

In this supplementary document accompanying our main submis-

sion, we first include a discussion contextualizing COFS in relation

to concurrent and previous scene generation methods. We then

present some generation results. Following that, we describe our

architecture and experimental setups in greater detail. In particular,

we describe each of the components of our architecture, including

the training protocol, our metrics, and the design of the user study.

Then we provide more details on the sampling strategy that we

employ, followed by a comparison of layout generation times and

parameter counts to existing methods. Additionally, we perform

an ablation study justifying our design choices. We conclude with

additional qualitative results and a table of key notation used in the

main paper.

CCS CONCEPTS

• Computing methodologies→ Shape modeling.

KEYWORDS

Furniture layout, transformers, conditional generation

ACM Reference Format:

Wamiq Reyaz Para, Paul Guerrero, Niloy J. Mitra, and Peter Wonka. 2023.

Supplementary Material for COFS: COntrollable Furniture layout Synthesis.

In Special Interest Group on Computer Graphics and Interactive Techniques
Conference Conference Proceedings (SIGGRAPH ’23 Conference Proceedings),
August 6–10, 2023, Los Angeles, CA, USA.ACM, New York, NY, USA, 18 pages.

https://doi.org/10.1145/3588432.3591561

1 DISCUSSION

Q:What exactly is the advantage of the proposed method over ATISS?
A: ATISS permutes whole objects during training which makes it

invariant to the order of objects. However, by design, ATISS has a

specific sampling order of attributes (cf. Section 7 and Equation 5).

This leads to certain undesirable attributes:

SIGGRAPH ’23 Conference Proceedings, August 6–10, 2023, Los Angeles, CA, USA
© 2023 Copyright held by the owner/author(s).

This is the author’s version of the work. It is posted here for your personal use. Not for

redistribution. The definitive Version of Record was published in Special Interest Group
on Computer Graphics and Interactive Techniques Conference Conference Proceedings
(SIGGRAPH ’23 Conference Proceedings), August 6–10, 2023, Los Angeles, CA, USA,
https://doi.org/10.1145/3588432.3591561.

(1) One does not get all conditional distributions of attributes, but

only a few. As an example, one cannot get the probability of an

object given a location - 𝑝 (𝜏 |𝑡) but one can only compute the

probability of a given class being at some location - 𝑝 (𝑡 |𝜏).

(2) A lack of these probabilities means one cannot perform usable

conditioning. During sampling, one cannot ask a single trained

model to perform both these tasks - ‘Given a location, what is

the most likely class here?’ and ‘Given this class, where is the

most likely location?’.

The kinds of conditioning described in (2) regularly arise in the

course of game development. One often needs a large amount

quickly generated layouts with some control over the generated

layout - in some layouts, one might only need to specify the class

of an object. For example, a lever or an item that triggers an action.

In others, we might need to specify more attributes - if one wants

to generate office scenes on a large scale, there would be a lot of

constraints on the angles of chairs and desks (with chairs facing

desks), and chairs in offices often facing the door. While designers

can generate a few examples in reasonable time, generating a few

dozen or so exploratory layouts can often be tedious.

ATISS is incapable of performing this form of conditioning. In COFS,

on the other hand, any subset of the attributes may be masked,

which lets the network infer that attribute, or unmasked which

makes the attribute a constraint.

This also allows to us train only a single model for all modes of

conditioning. Furthermore, our network has fewer parameters and

is faster to sample from (cf. Table 1 main submission).

Q: But ATISS shows results on Object Suggestion at a given location.
A: It is true that ATISS shows results showing generation of objects

at a given location. However, they perform the task in the following

way [Paschalidou et al. 2021]:

... We now test the ability of our model to provide object

suggestions given a scene and user specified location con-

straints. To perform this task we sample objects from our

generative model and accept the ones that fullfill the con-

straints provided by the user...

In practice, this means ATISS performs rejection sampling hoping

that randomly some object lies withing the provided constraints.

https://doi.org/10.1145/3588432.3591561
https://doi.org/10.1145/3588432.3591561

SIGGRAPH ’23 Conference Proceedings, August 6–10, 2023, Los Angeles, CA, USA Wamiq Reyaz Para, Paul Guerrero, Niloy J. Mitra, and Peter Wonka

In their code, this means they sample a 100 samples before giving

up. Based on our timing results (cf. Table 1, main paper), this is

significantly slower than our method by a few orders of magnitude.

For our COFS results with constrained locations, we simply set

location/translation attribute to the desired value (𝑡 = 𝑡0) on the en-

coder side and keep it unmasked. Then we only have to sample once,

as the distribution being sampled from on the decoder-side is the

distribution 𝑝 (𝑐, 𝑡 = 𝑡0, 𝑒, 𝑟). This makes fine-grained conditioning

more practical.

Q:What is the practical use-case for having complex constraints?
A: As answered in the first question, one practical use is in the

game-development industry where one needs a large number of

layouts with a few constraints on the classes, locations, or their

combinations.

Another scenario is interior-design where clients often want some-
thing to put in a location (implying constraints on location, and

inferring object type and other attributes). Clients oftentimes also

want an object somewhere so that it does not block some other ob-

ject. This implies a constraint on both location and spatial extent.

Rotation constraints might also be required, when clients want a

dominating direction - for example constraining the rotation of a

dining table or couch/sofa, which in turn sets constraints on how

the other furniture can be placed.

Q:What are the different types of position tokens?
A: In our early experiments, we tried a MaskGit [Chang et al. 2022]

style decoder-only architecture. However, MaskGit is trained with

absolute position tokens, a design decision, whichmakes sense in an

image generation setting - when generating faces, one expects eyes

to always be above the nose. But using absolute position encodings

breaks permutation invariance.

So we trained a model with no positional tokens at all. However,

this model performed very poorly on both conditional and uncon-

ditional generation. There are two reasons:

• Without some additional tokens specifying which attributes

belong to and define a single object, the normal attention mech-

anism treats all tokens as the same. While what we want is that

attributes of an object influence its other attributes more. This

problem is present even during training as there is no way of

letting the network know that the ‘next 5’ tokens belong to a

single object as there is no concept of the next or previous.

• Without absolute position encodings, sampling is incredibly

difficult. This has been shown in multiple examples in NLP

literature [Lewis et al. 2020; Radford et al. 2019; Vaswani et al.

2017; Wang and Cho 2019].

We then added tokens which let us specify a single object - the Ob-

ject Index Token, O8 which is added to embeddings of all attributes

that define a single object. This helps the model disambiguate be-

tween tokens that belong to different objects. This model worked

well for tasks like outlier detection but still performed poorly in

tasks which needed inference/generation of more tokens like un-

conditional or unconditional generation. This makes intuitive sense

as for outlier detection, the network, with Object Index Token can

disambiguate between different objects and can tell when an object

is wrong.

However, the tokens within an object are still treated the same, so

we added the Relative Position TokenR8 . This token is shared across
similar attribute types. Within each object, the Relative Position

Token demarcates what the token represents. We have one token

corresponding to each attribute type - 𝜏, 𝑡, 𝑒, 𝑟 (cf. Table 1).

With these two additional tokens, the performance was better

but still not the same quality as ATISS, especially in uncondi-

tional generation. We hypothesized that is in part because Non-

Autoregressive Sampling still does not achieve the same quality as

Autoregressive Sampling.

Hence, we came up with the architecture described in the main

paper - where the encoder has only O8 and R8 . This makes the

encoding a set-based encoding as there is no notion of order. And

we can still get very high quality samples, as the decoder side which

produces the samples is still autoregressive, with the usual Absolute

Posiition Token P8 .

This final model separates the duties of conditioning and generation

between the encoder and the decoder, with the encoder performing

the conditioning and the decoder the generation. The encoding is

set-like, which allows for many forms of fine-grained conditioning.

The decoding is the usual sequence decoding which leads to high-

quality samples.

See also the ablation and discussion in Sec. 5.1 about how using

both encodings on the encoder-side helps the decoder decide where

the attributes must be sampled.

2 ADDITIONAL GENERATION RESULTS

2.1 Qualitative Conditional Generation

Location-conditioned generation: In this section, we show some

qualitative results from our model that other methods cannot gen-

erate. In particular, we show in Fig. 1 how to perform location-

conditioned generation. In order to perform this, we use an empty

scene and encode its boundary representation I with our image

encoder. Then, we fix the locations in the sequence 𝐶 and allow

the model to sample the distribution for the classes. This is useful

as a suggestion module which can be used to provide suggestions

to a user using the system. The results show that COFS learns the

distribution of layouts with nightstands being close to the room

edges on either sides of the beds. Additionally, we see tv-stands
close to the center of the rooms aligned with the locations of beds.

For ease of visualization, instead of showing the whole distribution

over the possible classes, we choose to show the most-likely class.

Distributions under fine-grained conditioning: We now show

how the encoder allows COFS to look-ahead. In Fig. 2, we show the

distributions for two classes - nightstand and tv-stand. In gen-

eral, nightstand are to either sides of the beds. And the tv-stand
opposite the bed. To generate the distributions in COFS, we start

with an empty layout and set the constraint sequence𝐶 , as follows -

object 2 class is set to be bed and it’s location is given. We then sam-

ple from the model autoregressively but setting the object 1 class

Supplementary Material for COFS: COntrollable Furniture layout Synthesis SIGGRAPH '23 Conference Proceedings, August 6�10, 2023, Los Angeles, CA, USA

Figure 1: Attribute-level conditioning: For di�erent layouts, we use the location as a constraint, and let the model infer the classes. This is only possible because
of our encoder based architecture. Our model predicts classes that suit the location. ATISS on the other hand, cannot be conditioned in such a manner.

to be eithernightstand or tv-stand . This shows the idea behind
having an encoder. With the encoder, we can introduce conditions

that occur in thefuture. This form of conditioning is otherwise im-
possible in autoregressive models, as they need to respect causality.

SIGGRAPH '23 Conference Proceedings, August 6�10, 2023, Los Angeles, CA, USA Wamiq Reyaz Para, Paul Guerrero, Niloy J. Mitra, and Peter Wonka

Figure 2: Look-ahead: ATISS cannot condition on tokens yet not generated, hence it has distributions that are �at (uncertain) about the positions of the classes.
In contrast, COFS can look-ahead, hence the probabilities are much sharper as the locations of the generated classes are more constrained by the location of the bed
- shown by the blue circle.

We see this uncertainity particularly in thetv-stand class where
the ATISS model is certain that the class is towards the edges - as
seen by two peaks near the �oorplan boundary, but the model is
not sure exactly which boundary. On the other hand, COFS, which
is conditioned on thefuture location of thebedcan ignore the edge
where thebeditself is, as atv-stand exists opposite to thebed.

However, while this form of conditioning works well in general,
there is no guarantee that the constraints will be satis�ed. For exam-
ple, in the L-shaped �oorplan (highlighted in red), the distributions
are already very sharp. This is in part because the 3D-FRONT
dataset lays out L-shaped �oorplans in a very speci�c manner -
mostly the bed lying on the same side as the L. This also leads

to failure cases where the model ignores the provided condition,
because of the strong prior from the �oorplan boundary.

2.2 Qualitative Unconditional Generation
We show some qualitative examples of unconditional generation in
greater detail in Fig. 4.

3 DETAILS ON ARCHITECTURE AND
EXPERIMENT SETUPS

We base our architecture on ATISS [Paschalidou et al. 2021] in order
to ensure a fair comparison to our closest competitor, using the
same underlying library [Katharopoulos et al. 2020]. Consequently,
most of the building blocks are shared. However, we would like to

	Abstract
	1 Discussion
	2 Additional Generation Results
	2.1 Qualitative Conditional Generation
	2.2 Qualitative Unconditional Generation

	3 Details on Architecture and Experiment Setups
	3.1 Metrics for Unconditional Generation
	3.2 Additional Details on the Perceptual Study

	4 3D-Front Dataset
	5 Ablations
	5.1 Position Encodings
	5.2 Number of Layers
	5.3 Gradient Clipping
	5.4 Masking Strategy
	5.5 Transfer Learning:

	6 Sampling Details
	6.1 A Sampling Trick

	7 Attribute-Level Conditioning
	7.1 An illustrative example

	8 Additional Results
	References

