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Figure 1: We present a category-specific generative model for spatially-varying materials, whose results are seamlessly tileable

and optionally conditioned on patterns controlling the material structure. Our model can be used to generate new materials,

or inverted to find materials matching target photographs by optimization. Here we show examples of tile, leather, stone

and metal classes, either directly generated (1, 2, 4, 6, 8) or reconstructed from photographs (3, 5, 7, 9, 10) and, in some cases,

conditioned on an input structure pattern (1, 3, 5, 10). The insets show, where applicable, the target photograph, condition

pattern and a rendering of the synthesized material. The generated maps include height fields that are displacement-mapped

in the rendered scene.

ABSTRACT

Recent methods (e.g. MaterialGAN) have used unconditional GANs
to generate per-pixel material maps, or as a prior to reconstruct
materials from input photographs. These models can generate var-
ied random material appearance, but do not have any mechanism
to constrain the generated material to a specific category or to
control the coarse structure of the generated material, such as the
exact brick layout on a brick wall. Furthermore, materials recon-
structed from a single input photo commonly have artifacts and are
generally not tileable, which limits their use in practical content
creation pipelines. We propose TileGen, a generative model for
SVBRDFs that is specific to a material category, always tileable,
and optionally conditional on a provided input structure pattern.
TileGen is a variant of StyleGAN whose architecture is modified
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to always produce tileable (periodic) material maps. In addition
to the standard “style” latent code, TileGen can optionally take
a condition image, giving a user direct control over the dominant
spatial (and optionally color) features of the material. For example,
in brick materials, the user can specify a brick layout and the brick
color, or in leather materials, the locations of wrinkles and folds.
Our inverse rendering approach can find a material perceptually
matching a single target photograph by optimization. This recon-
struction can also be conditional on a user-provided pattern. The
resulting materials are tileable, can be larger than the target image,
and are editable by varying the condition.
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1 INTRODUCTION

High-quality materials are critical to realism in computer graphics
applications. While reflectance models and rendering algorithms
have reached excellent fidelity over the last decade, authoring pho-
torealistic materials is still a time-consuming process that requires
the construction and editing of complex procedural node graphs,
and/or skilled manipulation of textures captured from photographs.

Given the rapid progress in generative adversarial networks
(GANs) [Karras et al. 2021, 2018, 2019], such models are a natural
approach for material generation. As an example, MaterialGAN
[Guo et al. 2020b] is a recently proposed generative SVBRDF model
trained on a large example dataset of synthetic material maps. Ma-
terialGAN learns a latent space that can be sampled to produce
high-quality materials, or leveraged as an optimization prior for
SVBRDF capture from photographs. However, MaterialGAN is not
tileable and does not have any mechanism for controlling the gen-
erated materials. If a user is interested in changing the layout of a
synthesized brick texture, there is no simple way to do so other than
by repeatedly generating a randommaterial until the desired layout
is found by chance. Additionally, the results may have artifacts such
as specular highlights leaking into the estimated maps.

In this work, we propose TileGen, a category-specific generative
model for tileable SVBRDFs. Unlike previous methods, TileGen
(i) always produces tileable output, (ii) enables more direct control
over the generated materials by optionally conditioning on input
structure patterns that specify where the dominant features of the
material should be located, and (iii) allows plausible reconstruc-
tion of structured materials from a single photograph, due to the
additional regularization provided by the input condition.

TileGen is a variant of StyleGAN2 [Karras et al. 2019] whose
architecture is modified to always output tileable material maps. It
optionally uses features extracted from a conditional input pattern
in addition to the standard “style” latent. Fixing the conditional pat-
tern while varying the style code allows generating materials with
the same dominant features, but different styles. We demonstrate
that our conditional method can control the structure of complex
materials like tiles, or the locations of wrinkles in leather.

Based on TileGen, we propose an inverse rendering approach
to find a material matching the style of a single target photograph
taken with flash. For conditional materials, our method enables
the user to provide an approximate pattern corresponding to the
target photo; the pattern need not be precisely aligned with the
target image. Unlike previous per-pixel approaches, the resulting
materials are tileable, can be larger than the target image, and are
controllable by varying the condition pattern. These additional
benefits from TileGen could enable artists to easily generate and
fit a wide variety of material variations to reference photographs
and will become integral to practical material authoring workflows.

2 RELATEDWORK

Material acquisition. Recovering material properties from im-
ages is a long-standing challenge in graphics [Dong 2019; Guarnera
et al. 2016]. Some approaches propose to use specialized hardware
to capture material properties [Dong et al. 2010; Kang et al. 2018]
but the practice of these methods are limited by the bulky and
expensive setup. Deep learning demonstrated remarkable progress
in the quality of SVBRDF estimates from a single image (usually
captured under flash illumination using phone) [Deschaintre et al.
2018; Li et al. 2017, 2018]. These approaches produce smooth, plau-
sible maps, but still suffer from artifacts caused by over-exposure
burn-in, despite recent architecture modifications [Guo et al. 2021]
or GAN-based, mixed data augmentation [Zhou and Kalantari 2021].
Additionally, a single input is often too under-constrained, lead-
ing to inaccurate specular material properties. Recently, Henzler
et al. [2021] proposed to leverage a stationarity prior to capture
SVBRDFs from a single flash photograph, reducing burn-in artifacts
but limiting the class of supported materials. To improve quality,
few-images methods were proposed through direct inference [De-
schaintre et al. 2019; Ye et al. 2021] or deep optimization [Gao et al.
2019; Guo et al. 2020b]. Specifically, MaterialGAN [Guo et al. 2020b]
proposes to train an unconditional generative model for materials,
allowing to optimize in the generator latent space and input noise to
match the appearance of a target given a few target pictures. How-
ever, this model entangles spatial layout and style, is not tileable,
and gives no explicit control over the generated materials.

As opposed to most of these approaches, we do not target ex-
act per-pixel capture, but rather a result with matching perceptual
style, guided by the photo. Our approach enables guided recovery
of tileable and meaningfully controllable materials from a single pic-
ture and an optional structural pattern, through category-specific
conditional GANs.

Several works explicitly explored tileability for texture synthe-
sis [Bergmann et al. 2017] or completing textures into tiles through
feature repetition and tile search [Rodriguez-Pardo and Garces
2022b]. Our approach is to instead enforce tileability through our
network architecture; we do not attempt to complete non-tileable
textures into tileable ones. Instead, we define a space of plausible
tileable materials, which we can randomly sample, or project target
photographs into it.

Guided material generation and acquisition. To provide control
in the material acquisition and generation process, recent work
proposed to leverage different guides. Using one [Deschaintre et al.
2020] ormultiple images [Rodriguez-Pardo andGarces 2022a] along-
side a small material exemplar, previous work proposes to transfer
properties to large scale photograph of similar materials. Guehl
et al. [2020] define a procedural generator for realistic textural
structure masks, which they use to propagate existing material
properties. Leveraging this procedural structure generator, Hu et
al. [2022] recently proposed to generate an entire procedural ma-
terial graph using a segmentation mask and material as input. As
opposed to our approach, these methods rely on pre-existing mate-
rial inputs; they do not target material generation or capture.

Procedural material representations in the form of node graphs
[Adobe 2021], represent an artist-defined set of material appear-
ances. Hu et al. [2019] and Shi et al. [2020] propose to optimize the
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parameters of existing material graphs to match the appearance of a
target photo. Our method is related to procedural materials in that it
establishes a function from an input pattern (a generator in the case
of procedural materials) to an SVBRDF. However, it is more general
than these approaches, as it trains generators for broad material
classes, where training data can come from any source. TileGen
could be considered a class-level, neural procedural representation,
capable of generating a large variety of samples, with conditions
on the local structures and style.

Generative models. Our method is based on the StyleGAN [Kar-
ras et al. 2018, 2019] architecture which has demonstrated com-
pelling image synthesis results on well-defined domains such as
faces, landscapes, or cars. While recent approaches [Anokhin et al.
2020] propose independent per-pixel generation through a unique
latent vector and positional encodings, most works leverage spatial
convolutions. Isola et al. [2017] proposed an image-to-image trans-
lation model that conditions generation on an input image. More
recently, different methods such as SPADE [Park et al. 2019] and
CollageGAN [Li et al. 2021] proposed to condition GAN generation
with semantic masks. We build on this work, conditioning the gen-
eration of materials with structure through a binary or color mask.
Recently, Karras et al. [2021] highlighted the importance of careful
signal processing and translation invariance in GANs to prevent
the network from building priors based on absolute position in
the image. We prevent dependence on absolute positions by our
tileable architecture modifications and by random translations of
our dataset and generated materials.

3 TILEABLE AND CONDITIONAL GAN

In this section, we describe the architecture of TileGen, as well as
details about training techniques and training data.

3.1 Tileable architecture

TileGen is based on StyleGAN2 [Karras et al. 2019]. Different from
StyleGAN2, our architecture is designed to preserve tilability, a
property that is important for practically usable textures. This
is achieved by replacing all convolution and transposed convolu-
tion operations in the model by wrap-around versions, agnostic
to their location in the image or to the boundary location (please
refer to supplementary material for more details). Therefore, these
operations always produce smoothly tileable results if the input
condition is tileable, which is always true in our results.

We observe that in our modified architecture, intermediate fea-
ture maps at all levels remain periodic (shown in Fig. 2). Further-
more, we found that this architecture can even be used to produce
tileable materials from a non-tileable dataset (though the models
shown in the paper use tileable datasets).

3.2 Conditional architecture

CollageGAN [Li et al. 2021] is a recent conditional GAN approach
for generating realistic images given segmentation maps. Though
we do not currently collage multiple GAN models, we use a condi-
tional architecture (shown in Fig. 2) inspired by CollageGAN.

The main idea of the CollageGAN architecture is that the con-
ditional pattern 𝒑 is encoded into features 𝝓, which feed into the
initial layer of the architecture at size 32× 32, replacing the learned

( )Input Pattern

Random
translation

Training 
SVBRDFs 

with patterns
(augmented)

Output SVBRDF maps( )
Style Vector

( )Noise
( +)

Discriminator

Φ

Shift invariance loss

Conditional MaterialGAN2

Intermediate features Tiled intermediate features

ξLatent

Figure 2: The conditional version of TileGen is trained on a

dataset of SVBRDF parameter maps with corresponding con-

dition patterns. Our conditional generator has a CollageGAN-

like encoder that maps the input pattern 𝒑 into features 𝚽

at the start of the StyleGAN2-based decoder (green); the de-

coder also receives the latent code 𝒛 (via a mapping network)

and noise. The encoder and decoder have been modified to

only use tileable operations. The resulting SVBRDF maps,

together with the condition, are randomly translated and

fed to a StyleGAN2 discriminator. Differences between con-
ditional model and unconditional model are shown in light
blue. In unconditional model, we do not have input patterns
and encoder-decoder. See Sec. 3 for more details.

initial constant of StyleGAN2. This approach is also used in our
architecture; however, a major difference from CollageGAN is that
our latent vector 𝒛 is generated at random from the normal dis-
tribution, instead of depending on 𝒑. We therefore do not apply
KL-divergence loss to regularize the latent vector either. This pro-
vides a certain level of disentanglement between the pattern 𝒑 and
the “style” of the material, given by the latent vector 𝒛. This prop-
erty is important for our inverse rendering, and does not exist in
CollageGAN, where the result depends on the condition 𝒑.

Our trained generator can be written as a function G that gen-
erates the material parameter maps (in our case, 5 channels for
non-metallic materials: diffuse albedo 𝒂, height 𝒉, roughness 𝒓 ),
given the latent code 𝒛 and pattern 𝒑. For our metal material class,
the generator also outputs one extra channel: the metallic amount
m. It could be extended to output different number of channels
driving different shading models.

3.3 Synthetic dataset design

We prepare class-specific datasets based on Substance Source; each
Substance graph created by artists is tagged as the corresponding
material class (like stone, leather, etc.). Using these tags, we create
datasets for four categories (leather, tile, stone, and metal). One
reason that we choose class-specific training is that it enables us
to define conditional patterns per class. We trained four TileGen
models using prepared four synthetic datasets: unconditional stone
and metal models, and conditional tile/brick and leather models.
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Input Z1 Z2 Z3 Z4

Figure 3: Randomly sampled conditional materials from the

tile and leather classes. We feed the conditional pattern on

the left to TileGen, along with four different random la-

tent vectors 𝒛1, . . . , 𝒛4, to produce corresponding material in-

stances. The results have varied appearance with a constant

layout condition. The texture maps are shown in supplemen-

tary materials.

For a given class, we collected a number of Adobe Substance node
graphs [Adobe 2021]. We sampled their parameters in reasonable
ranges, and saved the output material maps: diffuse albedo 𝒂, height
(displacement) 𝒉, roughness 𝒓 , and metallicitym for metals (though
other material categories such as fabrics or fur could output other
maps). We further augment the training examples, by applying
augmentation to the height and roughness channels. We apply
small color augmentation to remain within realistic color tones for
a given material class.

Pairing each synthetic material with its conditional pattern is
dependent on the specific material category. For the tile/brick class,
we identified a node in the corresponding graph whose output
approximately matches our desired pattern, having a high value
denoting a tile and a low value denoting the gap between tiles.
For the leather class, we similarly identified a node whose output
closely matches the final wrinkle pattern. We either threshold these
outputs to make them binary for tile or keep these outputs as
grayscale for leather, yielding the pattern 𝒑, which we save as an
additional texture output. We kept the stone and metal categories
unconditional, as there is no obvious structure shared by them
(though specific subsets of stones or metals could have structure
and we could make specific models for them). Even though we focus

Figure 4: Randomly sampled unconditional materials from

the stone and metal classes, showing the diversity of the

results within each class. The corresponding texture maps

are shown in supplementary materials.

on four material categories in the paper, our approach is flexible
and it is possible to prepare any dataset, e.g. mixing materials which
share similar types of conditions. Please refer to supplementary
materials for more implementation details and dataset examples.

3.4 Losses

We train our networks with an adversarial loss 𝐿adv. We follow the
StyleGAN2 [2019] discriminator architecture and regularization, ex-
cept with more channels provided to the discriminator, representing
our parameter texture maps.

For the conditional models, we also feed the condition pattern
to the discriminator and randomly translate the pattern and maps
(both ground-truth and generated) before feeding them.When train-
ing conditional models with only the adversarial loss above, we find
that the model bakes in some material structure variations into the
latent code 𝒛 (i.e., varying 𝒛 also changes the dominant structures
in the generated material). However, we want the input pattern
to drive the material structure; we introduce a second loss 𝐿shift
ensuring that shifting the input pattern also shifts the generated
material maps by the same amount. We run the pattern 𝒑 through
the generator G twice: the second time with a random translation
(shift) 𝑇 , maintaining the same latent vector 𝒛. A further detail is
that we also shift the random noise (used in StyleGAN2 as addi-
tional inputs to the generator) by the same amount. Finally, the shift
loss is defined as: 𝐿shift = ∥𝑇 (G(𝒑, 𝒛, 𝝃 )) − G(𝑇 (𝒑), 𝒛,𝑇 (𝝃 ))∥1.
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Target Pattern Output SVBRDF Target Pattern Output SVBRDF Target Pattern Output SVBRDF

Figure 5: Examples of reconstructing conditional materials from a single target photograph with flash illumination for tiles

(two top rows) and leather (two bottom rows). For each materials class, the target image is on the left, followed by the input

pattern created by the user. For tiles we assume the user pattern has approximately matching feature sizes to the photo,

though the feature layout can be arbitrary as we do not seek per-pixel correspondence. For leathers we assume the patterns

represents wrinkles, though these wrinkles may not exist in the target images. The third column shows our resulting rendered

material, followed by the predicted parameter maps (top-left: diffuse map, top-right:height map, bottom-left: roughness map,

bottom-right:normal map).

4 MATCHING TARGET IMAGES

In this section, we use TileGen to solve the inverse problem of
finding an SVBRDF that, when rendered, matches the appearance
of a target photograph of a physical material sample.

We assume the input image is a single photograph of a planar
sample taken with a cell phone camera with flash. We use a differ-
entiable rendering operator R that takes as input the parameter
maps, and synthesizes corresponding images of the material lit by
the flash illumination. We turn the height map into a normal map
using central finite differences, and shade the diffuse component
using a Lambertian term, and the specular component using a stan-
dard microfacet BRDF with the GGX normal distribution [Walter
et al. 2007]. This could be easily extended to other lighting/shading
setups or to multiple inputs, as these are independent of TileGen
and are just modifications to the rendering operator.

Given a target image 𝑰 , we would like to find material maps
that render to an image similar to 𝑰 , under a suitable loss L. More
specifically, we define the vector 𝒖 to be the pair of style vector𝒘+

and noise vector 𝝃 in theW+N space (illustrated in Fig. 2), instead
of the original random code 𝒛, as detailed by Guo et al. [2020b]. The
optimization problem then becomes:

𝒖∗ = argmin𝒖 L(R(G(𝒖,𝒑)), 𝑰 ), (1)

where G is the learned conditional TileGen generator. (For uncon-
ditional generators, we drop the 𝒑 dependence.) Given that both
G and R are differentiable operations, Eq. (1) can be optimized
via gradient-based methods to estimate 𝒖∗ and the corresponding
SVBRDF maps G(𝒖∗,𝒑).

A key question is which loss L to use. Per-pixel losses (used
by MaterialGAN) cause overfitting, especially when run on single
images. This leads to unrealistic maps with undesirable artifacts,
such as flash leaking into the albedo, that happen to lead to lower

loss than any realistic maps would [Deschaintre et al. 2018; Gao
et al. 2019]. Our main loss term is a style loss based on the Gram
matrix [Gatys et al. 2015] of VGG features [Simonyan and Zisserman
2015], which approximates the difference between distributions of
neural feature activations, and is insensitive to pixel alignment. This
loss has been successfully used for material capture without pixel
correspondence for procedural materials [Guo et al. 2020a; Shi et al.
2020]. The style loss drives the overall appearance, while condition
and prior learned by our generator ensures the local coherence and
tileability of the results, and that the optimized appearance remains
in the subspace of realistic materials for a targeted class.

We combine the Gram matrix loss with an 𝐿1 loss computed
between downsampled images of resolution 16 × 16. This improves
global matching of overall color and roughness. Furthermore, at
every other iteration, we apply random translations to the gener-
ated material maps before passing them to the rendering operator:
essentially, we are looking for a material that renders to a close
perceptual match to the target image across all of its translations.
This further makes any remaining overfitting negligible.

In contrast, the original MaterialGAN cannot be based on a global
loss, because its material prior is not strong enough by itself. Using
only a style loss and the low-resolution 𝐿1 loss with our models
works because they are class-specific and (in the case of highly
structured materials like tiles) conditional on structure patterns.
Tileability of the resulting materials is also only possible when
using a style loss; a per-pixel match to the original (non-tileable)
target image would of course not be able to produce tileable results.

5 RESULTS

We trained several versions of TileGen: conditional models for
brick/tile and leather materials, and unconditional models for stone
and metal materials. We additionally trained a color-conditioned
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Target Output SVBRDF Target Output SVBRDF Target Output SVBRDF

Figure 6: Examples of reconstructing unconditional materials from a single target photograph with flash illumination for

stone (two top rows) and metal (two bottom rows). For each materials class, the target image is on the left, followed by our

resulting rendered material and the predicted parameter maps (for stone, the order of feature maps is same as Figure 5; for

metal, top-left: base color, top-right: height map, bottom-left: roughness, bottom-right: metallic map).

Tiled Output Tiled OutputTiled SVBRDF Tiled SVBRDF

Figure 7: Demonstration of tileability for both inverse ren-

dering (two top rows) and randomly sampled results (two

bottom rows). The leftmost image is either the target for

inverse rendering or the original generated material for ran-

dom sampling, followed by a rerendered image using tiled

texture maps and the corresponding tiled texture maps. The

results show seamless tileability (periodicity) of our result-

ing textures, even though the target image is not tileable in

the inverse rendering examples.

version shown in supplemental materials. Here, we demonstrate
the results of applying these models to both forward generation

and inverse optimization tasks, with and without conditions. We
show more results in supplemental materials.

Forward generation. We demonstrate the results of using our
models in a forward manner for material generation. In Figure
3, we show the results of several input patterns provided to our
conditional generator, with four randomly sampled styles (latent
codes) for each pattern, and showcase the quality and variety of the
generated results. This demonstrates that the layout of the results
indeed follows the input condition, while the style of the result is
separated and depends on the latent code. For conditional models,
all input conditions are tileable. Such patterns are easy to create us-
ing existing tools such as Substance Designer’s generator nodes. In
Figure 4, we show the results of unconditional generators, showing
semantically meaningful variety as we sample new materials.

Material capture. Next, we show examples of using our models
as priors for optimization-based material capture from real pho-
tographs. In Figure 5, we show conditional material capture from
target images. We only assume that the input patterns match the ap-
proximate feature size and layout in the target image, with no pixel
correspondence required. Note how our reconstructions capture
the appearance of the material samples while remaining faithful
to the input condition, even though it is not exactly aligned with
the target image. We also show that we can change the conditional
patterns, allowing to control the result details while preserving the
target appearance. Next, in Figure 6 we show examples of materials
recovered using our unconditional models: stone (2 top rows) and
metal (2 bottom rows). By using a class-specific generative model,
we can relax the optimization loss from per-pixel to global, prevent-
ing the flash artifacts typical in previous single image acquisition
methods, and obtaining tileable results as an additional benefit.
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Figure 8: Comparison with three SVBRDF estimation ap-

proaches [Deschaintre et al. 2018; Guo et al. 2020b; Zhou

and Kalantari 2021] on SVBRDF capture from a single target

image (left). All of these approaches generate unclean feature

maps, baking in the flash highlight. In contrast, our material

maps and re-renderings are clean and plausible.

We evaluate further properties of our method: the tileability of
our results (Figure 7). The supplementary materials also demon-
strate that the effect of input patterns on results, the invariance
to translation of the input pattern, the use of a colored condition,
using conditions of higher resolutions.

Comparison. We first compare our approach to MaterialGAN
[Guo et al. 2020b], Zhou et al. [2021] and Deschaintre et al. [2018] in
Figure 8. Please refer to supplementary materials for more compar-
isons withMaterialGAN.We see that theMaterialGAN optimization
approach, when used with a single input photograph, does not suf-
ficiently constrain the space of realistic materials and generates
unrealistic material parameters. The forward methods by Zhou et
al. and Deschaintre et al. also suffer from flash artifacts and do
not recover tileable materials. Our method does not suffer from
these problems even when matching a single target image, thanks
to its architecture, the pattern conditioning, the use of a style loss
rather than a per-pixel comparison, and the random translations
during optimization. While our results are not exactly aligned with
the target photograph, they capture the overall appearance more
accurately and are significantly more practical in a content creation

Our unconditional model
trained with non-tileable dataset MaterialGAN 

Figure 9: Comparison of randomly sampled results of origi-

nal MaterialGAN and our unconditional model trained on

the same non-tileable dataset MaterialGAN was trained on,

showing 2x2 tiled results and the corresponding tiled mate-

rial maps. Even when trained with a non-tileable dataset, our

unconditional model can produce seamless texture maps.

Ours MaterialGAN optimized 
with our loss

Target Tiled renderings Tiled SVBRDF Tiled renderings Tiled SVBRDF

Figure 10: Comparison to the original MaterialGAN opti-

mized with our global loss. Even when using a non pixel-wise

loss, the results of MaterialGAN present highlight baking

artifacts and are not tileable, unlike our results.

workflow. We further compare our tileable architecture to Material-
GAN by training our unconditional model with the original dataset
from Deschaintre et al. that MaterialGAN was trained on (Figure
9), showing that our results are tileable even if the dataset is not.
We also compare our inverse rendering results with the original
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MaterialGAN but using our loss function in Figure 10, showing that
just changing the loss is not sufficient to improve the results.

5.1 Discussion and Limitations

Our approach is trained per material semantic class, which enables
meaningful style navigation and conditioning, but requires training
one network per class and to have sufficient amount of dataset for
each class. Our current generators have a resolution of 512 × 512
and have been trained for five days on 4 NVidia V100 GPUs. Higher-
resolution generative models with faster training time remain a
desirable future improvement. Our optimization takes around two
minutes per target image, which is usable in practice, but a faster
solver (perhaps based on a neural network predicting larger steps
than basic gradient descent methods) would be a valuable direction.

6 CONCLUSION AND FUTUREWORK

We propose a new material authoring approach conditioned on
class-specific networks, and show that we can condition them on
easily authored inputs such as structure for tiles or cracks for leather.
We train a semantically meaningful material generator, separating
style from structure in the available control. We demonstrate ma-
terial generation, acquisition matching the appearance of a single
photograph, as well as additional effects such as interpolation, on
multiple material classes. We believe that our method simplifies
material design, making it accessible to novice user with extended
control, without relying on complex material graphs.

We hope that future work will increase the resolution and train-
ing performance of the conditional generators. Meanwhile, it would
be interesting to study the influence of material categorization on
TileGen. Training TileGen on actual material sample photos from
specific categories is also an exciting future direction, creating
highly valuable material generators based on real data.
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