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1 JOINT EMBEDDING OF SHAPES AND IMAGES
The joint embedding of multiple modalities described in Section 6.4
of our paper can also be used for retrieval. For example, instead of
looking up the encoded shape that is closest to an encoded image,
we can look up the images that are closest to an encoded shape, and
thereby get the top-k image matches for a given shape. In Figure 1
we show the top-3 images and point clouds for a given query shape.
Qualitatively, most of the retrieved results are a good match to the
query shape.

Joint embedding. A two-dimensional t-SNE embedding [Maaten
and Hinton 2008] of the joint multi-modal latent space is shown
in Figure 2. We show representative samples on a grid, choosing
at each location randomly one of the modalities: shapes, images
or point clouds. We can see that the distributions of the different
modalities align well; nearby samples tend to represent similar
shapes. Sofa chairs, for example, are clustered on the left side of the
diagram for all modalities, and on the right side, we find chairs with
backrests that have multiple vertical bars. Furthermore, the learned
latent space is ‘structurally smooth’ that nearby regions tend to
be connected by natural transitions between the structures of the
chairs, which is also confirmed by the interpolation experiments in
Section 6.3. of the paper.
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Part-based retrieval. Retrieval based on individual parts, for ex-
ample, retrieving chairs with backrests similar to a query shape, can
be done by training a separate encoder for each part type that we
want to retrieve. The bottom three rows of Figure 1 show part-based
retrieval results for the base and backrest of chairs, compared to
performing a retrieval based on the full shape. To retrieve images
with similar bases, for example, we train an encoder similar to Sec-
tion 6.4 of our paper, but trained to using the latent space of chair
bases only instead of full chairs. Unlike the latent space of the full
shape, the latent space of parts is not specifically regularized to be
smooth. Still, we can see from the successful retrieval results, that
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Fig. 1. Image and point cloud retrieval. Images and point clouds are
retrieved using on a query shape based on the distance from the query
in the multi-modal latent space. The bottom three rows compare retrieval
with the full shape as query to part-based retrieval using the backrest and
chair base only. The retrieved shapes are similar to the query, showing that
similar shapes have a small distance in latent space, even across modalities.
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the latent space of individual parts tends to be meaningful, where
feature vectors that have a small distance in latent space correspond
to similar parts.

2 ABLATION STUDY
We performed an ablation study to evaluate the contribution of
individual components to our method for the shape reconstruction
experiments. Results are shown in Table 1. Specifically, we trained 5
variations of our method, removing a combination of components in
each. Components we examined are the message passing performed
in the decoder, where, different from the encoder, it is not strictly
necessary to handle relationship edges, the normal reconstruction
loss Lnormal, and the structure consistency loss Lsc. The normal re-
construction loss noticeably decreases the geometry reconstruction
error EP and together with the structure consistency loss Lsc, low-
ers the consistency errors. The normal and structure consistency
losses come at the cost of a slightly increased hierarchy error EH,
presumably since these losses encourage the network to focus more
resources on the part geometry, as opposed to the hierarchy. This
cost is reduced by message passing, which significantly lowers the
hierarchy error. Finally, we also compare to removing edges all-
together, which results in a significant increase in the geometry
reconstruction error.

Table 1. Ablation study. We compare our full method (bottom row) to a
version without combinations of message passing (mp), the normal loss
Lnormal (nl), and the structure consistency loss Lsc (scl). In the top row
we show a version that does not use relationship edges. The normal and
edge loss both increase consistency significantly, at a small cost in the
hierarchy reconstruction. Message passing improves coordination between
parts, reducing this cost.

reconstruction err. consistency err.

EP EH ER Erc Egc

no edges 0.0662 0.194 0.0288
- (mp, scl, nl) 0.0649 0.192 0.240 0.0323 0.0365
- (mp, scl) 0.0616 0.198 0.243 0.0216 0.0259
- (nl) 0.0631 0.201 0.254 0.0323 0.0380
- (scl) 0.0649 0.201 0.249 0.0194 0.0242
- (mp) 0.0621 0.212 0.250 0.0186 0.0223
StructureNet 0.0620 0.200 0.246 0.0183 0.0226

3 IMPLEMENTATION
We implement StructureNet in PyTorch [Paszke et al. 2017]. All
sub-networks of our hierarchical graph networks are implemented
as simple Multilayer Perceptrons (MLPs) with ReLU non-linearities,
andwithout batch normalization [Ioffe and Szegedy 2015], except for
the specialized encoders for images and unannotated point clouds,
and the pre-trained point cloud autoencoder for the part geometry.
We use a batch size of 32 shapes. Due to the difficulty of batched
training with recursive networks, we compute the loss for each
shape separately before summing the per-shape losses up to obtain
the loss for the batch. Back-propagation is performed on the batch
loss. Typically, our networks for bounding box geometry converge

in 1−2 days, whereas the networks for point cloud geometry require
2 − 4 days to train on a single GeForce RTX 2080 Ti and an Intel
i9-7940X CPU. Memory consumption is modest, at approximately
1 − 2 GB. We will release code and datasets upon acceptance.

4 SEMANTIC HIERARCHIES
We present the PartNet [Mo et al. 2019] semantics hierarchies for
chairs (Figure 3), tables (Figure 4) and storage furnitures (Figure 5)
that we use in this paper. We assign the semantic labels in the
figures with the colors that we use for box-shape and point cloud
visualization in the main paper.

5 MORE OBJECT CATEGORIES
In Figures 6 and 7, we show shape generation and interpolation
results for two additional object categories in PartNet: vases and
trash cans. Additionally, we show a training attempt on a severely
under-sampled dataset in Figure 8. See the captions for more detailed
descriptions.

6 ADDITIONAL GENERATED SHAPES
We show more StructureNet VAE generation results for box-
shapes in Figure 9 and for point cloud shapes in Figure 10.

7 ADDITIONAL SHAPE INTERPOLATIONS
We show more StructureNet VAE interpolation results for box-
shapes and point cloud shapes in Figure 11.

8 ADDITIONAL SHAPE ABSTRACTIONS
We show more StructureNet shape abstraction results from 2D
images, 3D point clouds or partial scans in Figure 12.
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Fig. 2. Joint embedding of images, point clouds and shapes.We visualize the multi-modal latent space as a two-dimensional embedding. At each grid
point, we randomly show one of the modalities.

ACM Trans. Graph., Vol. 38, No. 6, Article 242. Publication date: November 2019.



242:4 • Kaichun Mo, Paul Guerrero, Li Yi, Hao Su, Peter Wonka, Niloy J. Mitra, and Leonidas J. Guibas

Fig. 3. PartNet semantic hierarchy for chairs. Dash lines show the OR-nodes and solid lines show the AND-node in PartNet. We assign the semantic
labels in the figures with the colors that we use for box-shape and point cloud visualization in the main paper.
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Fig. 4. PartNet semantic hierarchy for tables. Dash lines show the OR-nodes and solid lines show the AND-node in PartNet. We assign the semantic
labels in the figures with the colors that we use for box-shape and point cloud visualization in the main paper.
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Fig. 5. PartNet semantic hierarchy for storage furnitures. Dash lines show the OR-nodes and solid lines show the AND-node in PartNet. We assign the
semantic labels in the figures with the colors that we use for box-shape and point cloud visualization in the main paper.
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Fig. 6. Shape generation results for vases and trash cans. The datasets for these categories are smaller than for our main categories: 505 samples for vases
and 83 for trashcans. Vases have a less complex structure compared to the other categories, making the quality of the generated geometry more important,
while trashcans have a wider range of structures.

source targetvases trashcanssource target

Fig. 7. Shape interpolation results for vases and trash cans. Similar to our main categories, structure is interpolated smoothly. The last rows for vases
and trash cans show that the part geometry is interpolated smoothly as well.
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Fig. 8. Shape generation results for beds. We also test on this third, severely under-sampled category, with a training set size of 54. As we can see in
Figure 8, the network is experimenting with different structures, but the size of our dataset is not large enough for the network to reliably distinguish between
realistic and unrealistic beds.
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Fig. 9. More Box-shape Generation Results.
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Fig. 10. More Point Cloud Generation Results.
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Fig. 11. More Shape Interpolation Results.
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Fig. 12. More Shape Abstraction Results.
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