
000

001

002

003

004

005

006

007

008

009

010

011

012

013

014

015

016

017

018

019

020

021

022

023

024

025

026

027

028

029

030

031

032

033

034

035

036

037

038

039

040

041

042

043

044

000

001

002

003

004

005

006

007

008

009

010

011

012

013

014

015

016

017

018

019

020

021

022

023

024

025

026

027

028

029

030

031

032

033

034

035

036

037

038

039

040

041

042

043

044

ECCV

#2941
ECCV

#2941

Points2Surf
Learning Implicit Surfaces from Point Clouds

Anonymous ECCV submission

Paper ID 2941

Abstract. A key step in any scanning-based asset creation workflow is
to convert unordered point clouds to a surface. Classical methods (e.g.,
Poisson reconstruction) start to degrade in the presence of noisy and
partial scans. Hence, deep learning based methods have recently been
proposed to produce complete surfaces, even from partial scans. However,
such data-driven methods struggle to generalize to new shapes with large
geometric and topological variations. We present Points2Surf, a novel
patch-based learning framework that produces accurate surfaces directly
from raw scans without normals. Learning a prior over a combination of
detailed local patches and coarse global information improves generaliza-
tion performance and reconstruction accuracy. Our extensive comparison
on both synthetic and real data demonstrates a clear advantage of our
method over state-of-the-art alternatives on previously unseen classes
(on average, Points2Surf brings down reconstruction error by 30% over
SPR and by 270%+ over deep learning based SotA methods). Our source
code, pre-trained model, and dataset will be made publicly available.

Keywords: surface reconstruction, implicit surfaces, point clouds, patch-
based, local and global, deep learning, generalization

1 Introduction

Converting unstructured point clouds to surfaces is a key step of most scanning-
based asset creation workflows, including games and AR/VR applications. While
scanning technologies have become more easily accessible (e.g., depth cameras on
smart phones, portable scanners), algorithms for producing a surface mesh remain
limited. A good surfacing algorithm should be able to handle raw point clouds
with noisy and varying sampling density, work with different surface topologies,
and generalize across a large range of scanned shapes.

Screened Poisson Reconstruction (SPR) [19] is the most commonly used
method to convert an unstructured point cloud, along with its per-point normals,
to a surface mesh. While the method is general, in absence of any data-priors, SPR
typically produces smooth surfaces, can incorrectly close off holes and tunnels in
noisy or non-uniformly sampled scans (see Figure 1), and further degenerates
when per-point normal estimates are erroneous.

Hence, several data-driven alternatives [21, 8, 30, 13] have recently been pro-
posed. These methods specialize to particular object categories (e.g., cars, planes,
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input SPR GTDeepSDF AtlasNet

AtlasNetDeepSDF SPR Points2Surfinput

Points2Surf

Fig. 1. We present Points2Surf, a method to reconstruct an accurate implicit surface
from a noisy point cloud. Unlike current data-driven surface reconstruction methods
like DeepSDF and AtlasNet, it is patch-based, improves detail reconstruction, and
unlike Screened Poisson Reconstruction (SPR), a learned prior of low-level patch shapes
improves reconstruction accuracy. Note the quality of reconstructions, both geometric
and topological, against the original surfaces. The ability of Points2Surf to generalize
to new shapes makes it the first learning-based approach with significant generalization
ability under both geometric and topological variations.

chairs), and typically regress a global latent vector from any input scan. The
networks can then decode a final shape (e.g., a collection of primitives [13] or
a mesh [30]) from the estimated global latent vector. While such data-specific
approaches handle noisy and partial scans, the methods do not generalize to new
surfaces with varying shape and topology (see Figure 1).

As a solution, we present Points2Surf, a method that learns to produce
implicit surfaces directly from raw point clouds. During test time, our method can
reliably handle raw scans to reproduce fine-scale data features even from noisy
and non-uniformly sampled point sets, works for objects with varying topological
attributes, and generalizes to new objects (see Figure 1).

Our key insight is to decompose the problem into learning a global and a
local function. For the global function, we learn the sign (i.e., inside or outside)
of an implicit signed distance function, while, for the local function, we use
a patch-based approach to learn absolute distance fields with respect to local
point cloud patches. The global task is coarse (i.e., to learn the inside/outside of
objects) and hence can be generalized across significant shape variations. The
local task exploits the geometric observation that a large variety of shapes can be
expressed in terms of a much smaller collection of atomic shape patches [2], which
generalizes across arbitrary shapes. We demonstrate that such a factorization
leads to a simple, robust, and generalizable approach to learn an implicit signed
distance field, from which a final surface is extracted using marching cubes [23].
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We test our algorithms on a range of synthetic and real examples, compare
on unseen classes against both classical (reduction in reconstruction error by
30% over SPR) and learning based strong baselines (reduction in reconstruction
error by 470% over DeepSDF [30] and 270% over AtlasNet [13]), and provide
ablations studies. We consistently demonstrate both qualitative and quantitative
improvement over all the methods that can be applied directly on raw scans.

2 Related Work

Several methods have been proposed to reconstruct surfaces from point clouds.
We divide these into methods that aggregate information from a large dataset
into a data-driven prior, and methods that do not use a data-driven prior.

Non-data-driven surface reconstruction. Berger et al. [4] present an in-depth
survey that is focused primarily on non-data-driven methods. Here we focus on
approaches that are most relevant to our method.

Scale space meshing [10] applies iterative mean curvature motion to smooth
the points for meshing and maps the original points onto it. It is capable of
extracting multi-resolution features well. Ohrhallinger et al. propose a combi-
natorial method [27] which compares favorably with previous methods such as
Wrap [11], TightCocone [9] and Shrink [5] especially for sparse sampling and
thin structures. However, these methods are not designed to process noisy point
clouds.

Another line of work deforms initial meshes [33, 22] or parametric patches [36]
to fit a noisy point cloud. These approaches however, cannot change the topology
and connectivity of the original meshes or patches, usually resulting in a different
connectivity or topology than the ground truth.

The most widely-used approaches to reconstruct surfaces with arbitrary
topology from noisy point clouds fit implicit functions to the point cloud and
generate a surface as a level set of the function. Early work by Hoppe et al.
introduced this approach [16], and since then several methods have focused on
different representations of the implicit functions, like Fourier coefficients [17],
wavelets [24], radial-basis functions [29] or multi-scale approaches [28, 26]. Alliez
et al. [1] use a PCA of 3D Voronoi cells to estimate gradients and fit an implicit
function by solving an eigenvalue problem. This approach tends to over-smooth
geometric detail. Poisson reconstruction [18, 19] is the current gold standard for
non-data-driven surface reconstruction from point clouds. None of the above
methods make use of a prior that distills information about about typical surface
shapes from a large dataset. Hence, while they are very general, they fail to
handle partial and/or noisy input. We provide extensive comparisons to Screened
Poisson Reconstruction (SPR) [19] in Section 4.

Data-driven surface reconstruction. Recently, several methods have been proposed
to learn a prior of typical surface shapes from a large dataset. Early work was
done by Sauerer et al. [21], where a decision tree is trained to predict the
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absolute distance part of an SDF, but ground truth normals are still required to
obtain the sign (inside/outside) of the SDF. More recent data-driven methods
represent surfaces with a single latent feature vector in a learned feature space.
An encoder can be trained to obtain the feature vector from a point cloud.
The feature representation acts as a strong prior, since only shapes that are
representable in the feature space are reconstructed. Early methods use voxel-
based representations of the surfaces, with spatial data-structures like octrees
offsetting the cost of a full volumetric grid [34, 35]. Scan2Mesh [8] reconstructs
a coarse mesh, including vertices and triangles, from a scan with impressive
robustness to missing parts. However, the result is typically very coarse and not
watertight or manifold, and does not apply to arbitrary new shapes. AtlasNet [13]
uses multiple parametric surfaces as representation that jointly form a surface,
achieving impressive accuracy and cross-category generalization. More recently,
several approaches learn implicit function representations of surfaces [30, 6, 25].
These methods are trained to learn a functional that maps a latent encoding of a
surface to an implicit function that can be used to extract a continuous surface.
The implicit representation is more suitable for surfaces with complex topology
and tends to produce aesthetically pleasing smooth surfaces.

The single latent feature vector that the methods above use to represent a
surface acts as a strong prior, allowing these methods to reconstruct surfaces even
in the presence of strong noise or missing parts; but it also limits the generality of
these methods. The feature space typically captures only shapes that are similar
to the shapes in the training set, and the variety of shapes that can be captured
by the feature space is limited by the fixed capacity of the latent feature vector.
Instead, we propose to decompose the SDF that is used to reconstruct the surface
into a coarse global sign and a detailed local absolute distance. Separate feature
vectors are used to represent the global and local parts, allowing us to represent
detailed local geometry, without losing coarse global information about the shape.

3 Method

Our goal is to reconstruct a watertight surface S from a 3D point cloud P =
{p1, ..., pN} that was sampled from the surface S through a noisy sampling
process, like a 3D scanner. We represent a surface as the zero-set of a signed
distance function (SDF) fS :

S = L0(fS) = {x ∈ R3 | fS(x) = 0}. (1)

Recent work [30, 6, 25] has shown that such an implicit representation of the
surface is particularly suitable for neural networks, which can be trained as
functionals that take as input a latent representation of the point cloud and
output an approximation of the SDF:

fS(x) ≈ f̃P (x) = sθ(x|z), with z = eφ(P ), (2)

where z is a latent description of surface S that can be encoded from the input
point cloud with an encoder e, and s is implemented by a neural network that
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is conditioned on the latent vector z. The networks s and e are parameterized
by θ and φ, respectively. This representation of the surface is continuous, usu-
ally produces watertight meshes, and can naturally encode arbitrary topology.
Different from non-data-driven methods like Poisson reconstruction [19], the
trained network obtains a strong prior from the dataset it was trained on, that
allows robust reconstruction of surfaces even from unreliable input, such as noisy
and sparsely sampled point clouds. However, encoding the entire surface with
a single latent vector imposes limitations on the accuracy and generality of the
reconstruction, due to the limited capacity of the latent representation.

In this work, we factorize the SDF into the absolute distance fd and the
sign of the distance fs, and take a closer look at the information needed to
approximate each factor. In order to estimate f̃d(x) of the absolute distance at a
query point x, we only need a local neighborhood of the query point in the point
cloud P :

f̃dP (x) = sdθ(x|zdx), with zdx = edφ(pdx), (3)

where pdx ⊂ P is a local neighborhood of the point cloud centered around x.
Estimating the distance from an encoding of a local neighborhood gives us more
accuracy than estimating it from an encoding of the entire shape, since the local
encoding zdx can more accurately represent the local neighborhood around x than
the global encoding z. Note that in a point cloud without noise and sufficiently
dense sampling, the single closest point p∗ ⊂ P to the query x would be enough
to obtain a good approximation of the absolute distance. But since we work
with noisy and sparsely sampled point clouds, using a larger local neighborhood
increases robustness.

In order to estimate the sign f̃s(x) at the query point x, we need global
information about the entire shape, since the interior/exterior of a watertight
surface cannot be estimated reliably from a local patch. Instead, we take a global
sub-sample of the point cloud P as input:

f̃sP (x) = sgn
(
g̃sP (x)

)
= sgn

(
ssθ(x|zsx)

)
, with zsx = esψ(psx), (4)

where psx ⊂ P is a global subsample of the point cloud, ψ are the parameters
of the encoder, and g̃sP (x) are logits of the probability that x has a positive
sign. Working with logits avoids discontinuities near the surface, where the sign
changes. Since it is more important to have accurate information closer to the
query point, we sample psx with a density gradient that is highest near the query
point and falls off with distance from the query point.

We found that sharing information between the two latent descriptions zsx
and zdx benefits both the absolute distance and the sign of the SDF, giving us
the formulation we use in Points2Surf:(

f̃dP (x), g̃sP (x)
)

= sθ(x|zdx, zsx), with zdx = edφ(pdx) and zsx = esψ(psx). (5)

We describe the architecture of our encoders and decoder, the training setup,
and our patch sampling strategy in more detail in Section 3.1.
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Fig. 2. Points2Surf Architecture. Given a query point x (red) and a point cloud P , we
sample a local patch (yellow) and a coarse global subsample (purple) of the point cloud.
These are encoded into two feature vectors that are fed to a decoder, which outputs a
logit of the sign probability and the absolute distance of the SDF at the query point x.

To reconstruct the surface S, we apply Marching Cubes [23] to a sample grid
of the estimated SDF f̃d(x) ∗ f̃s(x). In Section 3.2, we describe a strategy to
improve performance by only evaluating a subset of the grid samples.

3.1 Architecture and Training

Figure 2 shows an overview of the architecture that implements the encoders
and the decoder. Our approach estimates the absolute distance f̃dP (x) and the
sign logits g̃sP (x) at a query point based on two inputs: the query point x and
the point cloud P .

Pointset sampling. The local patch pdx and the global sub-sample psx are both
chosen from the point cloud P based on the query point x. The set pdx is made
of the nd nearest neighbors of the query point (we choose nd = 300 but also
experiment with other values). Unlike a fixed radius, the nearest neighbors are
suitable for query points with arbitrary distance from the point cloud. The global
sub-sample psx is sampled from P with a density gradient that decreases with
distance from x:

ρ(pi) =
v(pi)∑

pj∈P v(pj)
, with v(pi) =

[
1− 1.5

‖pi − x‖2
maxpj∈P ‖pj − x‖2

]1
0.05

, (6)

where ρ is the sample probability for a point pi ∈ P , v is the gradient that
decreases with distance from x, and the square brackets denote clamping. The
minimum value for the clamping ensures that some far points are taken and the
sub-sample can represent a closed object. We sample ns points from P according
to this probability (we choose ns = 1000 in our experiments).

Pointset normalization. Both pdx and psx are normalized by centering them at
the query point, and scaling them to unit radius. After running the network,
the estimated distance is scaled back to the original size before comparing to
the ground truth. Due to the centering, the query point is always at the origin
of the normalized coordinate frame and does not need to be passed explicitly
to the network. To normalize the orientation of both point subsets, we use a
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data-driven approach: a Quaternion Spatial Transformer Network (QSTN) [15]
takes as input the global subset psx and estimates a rotation represented as
quaternion q that is used to rotate both point subsets. We take the global subset
as input, since the global information can help the network with finding a more
consistent rotation. The QSTN is trained end-to-end with the full architecture,
without direct supervision for the rotation.

Encoder and decoder architecture. The local encoder edφ, and the global encoder
esψ are both implemented as PointNets [31], sharing the same architecture, but
not the parameters. Following the PointNet architecture, a feature representation
for each point is computed using 5 MLP layers, with a spatial transformer in
feature space after the third layer. Each layer except the last one uses batch
normalization and ReLU. The point feature representations are then aggregated
into point set feature representations zdx = edφ(pdx) and zsx = esψ(psx) using a
channel-wise maximum. The decoder sθ is implemented as 4-layer MLP that
takes as input the concatenated feature vectors zdx and zsx and outputs both the
absolute distance f̃d(x) and sign logits g̃s(x).

Losses and training. We train our networks end-to-end to regress the absolute
distance of the query point x from the watertight ground truth surface S and
classify the sign as positive (outside S) or negative (inside S). We assume that
ground truth surfaces are available during training for supervision. We use an L2

regression for the absolute distance:

Ld(x, P, S) = ‖f̃dP (x)− d(x, S)‖2, (7)

where d(x, S) is the distance of x to the ground truth surface S. For the sign
classification, we use the binary cross entropy H as loss:

Ls(x, P, S) = H
(
σ
(
g̃sP (x)

)
, [fS(x) > 0]

)
, (8)

where σ is the logistic function to convert the sign logits to probabilities, and
[fS(x) > 0] is 1 if x is outside the surface S and 0 otherwise. In our optimization,
we minimize these two losses for all shapes and query points in the training set:∑

(P,S)∈S

∑
x∈XS

Ld(x, P, S) + Ls(x, P, S), (9)

where S is the set of surfaces S and corresponding point clouds P in the training
set and XS the set of query points for shape S. More information about the
training set we use in our experiments is given in Section 4.

3.2 Surface Reconstruction

At inference time, we want to reconstruct a surface S̃ from an estimated SDF
f̃(x) = f̃d(x)∗f̃s(x). A straight-forward approach is to apply Marching Cubes [23]
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to a volumetric grid of SDF samples. Obtaining a high-resolution result, however,
would require evaluating a prohibitive number of samples for each shape. We
observe that in order to reconstruct a surface, a Truncated Signed Distance Field
(TSDF) is sufficient, where the SDF is truncated to the interval [−ε, ε] (we set ε to
three times the grid spacing in all our experiments). We only need to evaluate the
SDF for samples that are inside this interval, while samples outside the interval
merely need the correct sign. We leave samples with a distance larger than ε
to the nearest point in P blank, and in a second step, we propagate the signed
distance values from non-blank to blank samples, to obtain the correct sign in
the truncated regions of the TSDF. We iteratively apply a box filter of size 33 at
the blank samples until convergence. In each step, we update initially unknown
samples only if the filter response is greater than a user-defined confidence
threshold (we use 13 in our experiments). After each step, the samples are set to
-1 if the filter response was negative or to +1 for a positive response.

4 Results

We evaluate our method by comparing to SPR as the gold standard for non-
data-driven surface reconstruction and to two state-of-the-art data-driven surface
reconstruction methods. We provide both qualitative and quantitative com-
parisons on several datasets in Section 4.2, and perform an ablation study in
Section 4.3.

4.1 Datasets

We train and evaluate on the ABC dataset [20] which contains a large number
and variety of high-quality CAD meshes. We pick 4950 clean watertight meshes
for training and 100 meshes for the validation and test sets. Note that since we
operate on local patches, each mesh in the datasets produces a large number of
diverse training samples. Operating on local patches also allows us to generalize
to other types of shapes which we demonstrate on two additional datasets that
we use for testing only: a dataset of 22 diverse meshes which are well-known
in geometry processing, such as the Utah teapot, the Stanford Bunny and the
Armadillo, which we call the Famous dataset, and 3 Real scans of complex
objects used in several denoising papers [37, 32]. Examples from each dataset
are shown in Figure 3. The ABC dataset contains predominantly CAD models
of mechanical parts, while the Famous dataset contains more organic shapes,
such as characters and animals. Since we train on the ABC dataset, the Famous
dataset serves to test the generalizability of our method versus baselines.

Pointcloud sampling. As a pre-processing step, we center all meshes at the origin
and scale them uniformly to fit within the unit cube. To obtain point clouds
P from the meshes S in the ABC and Famous datasets, we simulate scanning
them with a time-of-flight sensor from random viewpoints using BlenSor [14].
BlenSor realistically simulates various types of scanner noise and artifacts such as
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FamousABC

Fig. 3. Dataset examples. Examples of the ABC dataset and its three point cloud
variants are shown on the left, examples of the famous dataset and its five point cloud
variants on the right.

backfolding, ray reflections, and per-ray noise. We scan each mesh in the Famous
dataset with 10 scans, and each mesh in the ABC dataset with a random number
of scans, between 5 and 30. For each scan, we place the scanner at a random
location on a sphere centered at the origin, with the radius chosen randomly in
U [3L, 5L], where L is the largest side of the mesh bounding box. The scanner is
oriented to point at a location with small random offset from the origin, between
U [−0.1L, 0.1L] along each axis, and rotated randomly around the view direction.
Each scan has a resolution of 176× 144, resulting in roughly 25k points, minus
some points missing due to simulated scanning artifacts. The point clouds of
multiple scans of a mesh are merged to obtain the final point cloud.

Dataset variants. We create multiple different versions of both the ABC and
Famous datasets, with different amounts of per-ray noise. Per-ray noise simulates
inaccuracies in the depth measurements as Gaussian noise added to the depth
values. For the ABC dataset, we create a noise-free version of the point clouds
(called ABC no-noise), a version with variable amounts of noise where the
standard deviation is randomly chosen in U [0, 0.05L] (ABC var-noise), and
a version with a constant noise strength of 0.05L (ABC max-noise). For the
Famous dataset, we create a version without noise (Famous no-noise), a version
with a medium noise strength 0.01L (Famous med-noise), and a version with
maximum amount of noise 0.05L (Famous max-noise). Additionally we create
sparser and denser point clouds by varying the number of scans: a variant with
5 scans instead of 10 (Famous sparse), and a version with 30 scans (Famous
dense), both with a medium noise strength of 0.01L. The training set uses the
ABC var-noise version, all other variants are used for evaluation only.

Query points. The training set also contains a set XS of query points for each
(point cloud, mesh) pair (P, S) ∈ S. Query points closer to the surface are more
important for the surface reconstruction and more difficult to estimate. Hence, we
randomly sample a set of 1000 points on the surface and offset them in the normal
direction by a uniform random amount in U [−0.02L, 0.02L]. An additional 1000
query points are sampled randomly in the unit cube that contains the surface,
for a total of 2000 query points per mesh. During training, we randomly sample
a subset of 1000 query points per mesh in each epoch.
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Table 1. Comparison of reconstruction errors. We show the Chamfer distance between
reconstructed and ground truth surfaces averaged over all shapes in a dataset. Both the
absolute value of the error multiplied by 100 (abs.), and the error relative to Point2Surf
(rel.) are shown to facilitate the comparison. Our method consistently performs better
than the baselines, due to its strong and generalizable prior.

DeepSDF AtlasNet SPR Points2Surf

abs. rel. abs. rel. abs. rel. abs. rel.

ABC no-noise 8.41 4.68 4.69 2.61 2.49 1.39 1.80 1.00
ABC var-noise 12.51 5.86 4.04 1.89 3.29 1.54 2.14 1.00

ABC max-noise 11.34 4.11 4.47 1.62 3.89 1.41 2.76 1.00
Famous no-noise 10.08 7.14 4.69 3.33 1.67 1.18 1.41 1.00

Famous med-noise 9.89 6.57 4.54 3.01 1.80 1.20 1.51 1.00
Famous max-noise 13.17 5.23 4.14 1.64 3.41 1.35 2.52 1.00

Famous sparse 10.41 5.41 4.91 2.55 2.17 1.12 1.93 1.00
Famous dense 9.49 7.15 4.35 3.28 1.60 1.21 1.33 1.00

average 10.66 5.77 4.48 2.49 2.54 1.30 1.92 1.00

4.2 Comparison to Baselines

We compare our method, both qualitatively and quantitatively, to recent data-
driven surface reconstruction methods, AtlasNet [13] and DeepSDF [30], and to
SPR [19], which is still the gold standard in non-data-driven surface reconstruction
from point clouds. Both AtlasNet and DeepSDF represent a full surface as a
single latent vector that is decoded into either a set of parametric surface patches
in AtlasNet, or an SDF in DeepSDF. In contrast, SPR solves for an SDF that has
a given sparse set of point normals as gradients, and takes on values of 0 at the
point locations. We use the default values given by the authors for all baselines
and re-train the two data-driven methods on our training set. We provide SPR
with point normals as input, which we estimate from the input point cloud using
the recent data-driven patch-based method PCPNet [15]. DeepSDF additionally
requires an estimate of the SDF’s sign at random samples in the bounding box
of a surface. We use the ground truth signed distance for DeepSDF, giving us an
upper bound on the reconstruction.

Error metric. To measure the reconstruction error of each method, we sample
both the reconstructed surface and the ground truth surface with 10k points and
compute the Chamfer distance [3, 12] between the two point sets:

dch(A,B) :=
1

|A|
∑
pi∈A

min
pj∈B

‖pi − pj‖22 +
1

|B|
∑
pj∈B

min
pi∈A

‖pj − pi‖22, (10)

where A and B are point sets sampled on the two surfaces. The Chamfer distance
penalizes both false negatives (missing parts) and false positives (excess parts).

Quantitative and qualitative comparison. A quantitative comparison of the recon-
struction quality is shown in Table 1, and Figure 4 compares a few reconstructions
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Fig. 4. Qualitative comparison of surface reconstructions. We evaluate one example from
each dataset variant with each method. Colors show the distance of the reconstructed
surface to the ground truth surface.

qualitatively. All methods were trained on the training set of the ABC var-noise
dataset, which contains CAD models, predominantly of mechanical parts, while
the more organic shapes in the Famous dataset test how well each method can
generalize to novel types of shapes.

Since neither of the datasets has categories with a high geometric consistency
among the shapes, like cars or airplanes, DeepSDF and AtlasNet struggle to
accurately encode detailed surfaces in their latent representation and show a
significantly higher reconstruction error than SPR or Points2Surf. This is also
clearly visible in Figure 4, where the surfaces reconstructed by DeepSDF and
AtlasNet appear over-smoothed and inaccurate.

In SPR, the full shape space does not need to be encoded into a prior with
limited capacity, resulting in a better accuracy. But this lack of a strong prior
also prevents SPR from robustly reconstructing typical surface features, such as
holes or planar patches (see Figures 1 and 4).

Points2Surf learns a prior of local surface detail, instead of a prior for
global surface shapes. This local prior helps recover surface detail like holes and



495

496

497

498

499

500

501

502

503

504

505

506

507

508

509

510

511

512

513

514

515

516

517

518

519

520

521

522

523

524

525

526

527

528

529

530

531

532

533

534

535

536

537

538

539

495

496

497

498

499

500

501

502

503

504

505

506

507

508

509

510

511

512

513

514

515

516

517

518

519

520

521

522

523

524

525

526

527

528

529

530

531

532

533

534

535

536

537

538

539

ECCV

#2941
ECCV

#2941

12 ECCV-20 submission ID 2941

input SPR GTPoints2Surf input SPR GTPoints2Surf input SPR GTPoints2Surf

Fig. 5. Comparison of reconstruction details. Our learned prior is improves the recon-
struction robustness for geometric detail compared to SPR.

planar patches more robustly, improving our accuracy over SPR. Since there
is less variety and more consistency in local surface detail compared to global
surface shapes. Also, as inaccuracies of local detail result in smaller errors, our
method generalizes better and achieves a significantly higher accuracy than the
data-driven methods that use a prior over the global surface shape.

Generalization. A comparison of our generalization performance against AtlasNet
and DeepSDF shows an advantage for our method. In Table 1, we can see that
the error for DeepSDF and AtlasNet increases more when going from the ABC
dataset to the Famous dataset than the error for our method (DeepSDF and
AtlasNet tend to have larger values for the Famous dataset than for the ABC
dataset in the relative error columns). This suggests that our method generalizes
better from the CAD models in the ABC dataset set to the more organic shapes
in the Famous dataset than these two other data-driven methods.

Topological Quality. Examples of geometric detail that benefits from our prior
are shown in Figure 5. In each example, we compare our Points2Surf to SPR,
which does not use a learned prior. In the first example on the left, we can see
that small features such as holes can be recovered from a very weak geometric
signal in a noisy point cloud. Concavities, such as the space between the legs of
the Armadillo model, and fine shape details like the Armadillo’s hand are also
recovered more accurately in the presence of strong noise. In the heart example
on the right, the concavity makes it hard to estimate the correct sign (inside
versus outside) based on only a small local neighborhood, leading to erroneous
directions for normal estimates leading to an artifact for SPR. In contrast, the
global information we use in our patches helps us estimate the correct sign, even
if the local neighborhood is misleading.

Effect of Noise. Examples of reconstructions from point clouds with increasing
amounts of noise are shown in Figure 6. We show both Points2Surf and other
reconstructions. Our learned prior for local patches and our coarse global surface
information makes it easier to find small holes and large concavities. In the
medium noise setting, we can recover both the small holes and the large concavity
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noise: 0L

A.NetD.SDF P2SSPRinput A.NetD.SDF P2SSPRinput A.NetD.SDF P2SSPRinput

noise: 0.01L noise: 0.05L≥0.030 distance to gt

Fig. 6. Effect of noise on our reconstruction. DeepSDF (D.SDF), AtlasNet (A.Net), SPR
and Point2Surf (P2S) are applied to increasingly noisy point clouds. Our patch-based
data-driven approach is more accurate than DeepSDF and AtlasNet, and can more
robustly recover small holes and concavities than SPR.

AtlasNetDeepSDF SPR Points2Surfinput

Fig. 7. Reconstruction of real-world point clouds. Snapshots of the real-world objects
are shown on the left. DeepSDF and AtlasNet do not generalize well, resulting in
inaccurate reconstructions, while the smoothness prior of SPR results in loss of detail
near concavities and holes. Our data-driven local prior preserves these details more
faithfully.

of the surface. In the maximum noise setting, it is very difficult to detect the
small holes, but we can still recover the concavity.

Real-world data. We reconstruct two point clouds from three multi-view point
clouds. The results are shown in Figures 1 and 7. The point clouds in Figure 1
bottom and Figure 7 bottom both originate from a multi-view dataset [37] and
were obtained with a plane-sweep algorithm [7] from multiple photographs of
an object. We additionally remove outliers using the recent PointCleanNet [32].
Figure 7 top was obtained by the authors through an SfM approach. We compare
our results to DeepSDF, AtlasNet and SPR. DeepSDF and AtlasNet do not
generalize well to previously unseen shape categories. SPR performs significantly
better, its smoothness prior tends to over-smooth shapes and close holes, loosing
geometric detail. Points2Surf better preserves holes and details, at the cost of
a slight increase in topological noise. Our technique also generalizes to unseen
point-cloud acquisition methods.
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Table 2. Ablation Study. We compare Points2Surf to using a fixed radius of small,
medium and large size for the local patch instead of the k nearest neighbors (rsmall, rmed

and rlarge); to using a smaller and larger number of nearest neighbors (ksmall and klarge);
and to using a shared encoder for the local patch pd

x and the global sub-sample ps
x

(eshared). We show the Chamfer distance relative to Points2Surf. Our design choices
perform better than any of these variants on the ABC and Famous datasets.

rsmall rmed rlarge ksmall klarge eshared Points2Surf

ABC var-noise 1.12 1.07 1.05 1.08 1.87 1.02 1.00
Famous no-noise 1.09 1.08 1.17 1.05 8.10 1.06 1.00

Famous med-noise 1.06 1.05 1.10 1.04 7.89 1.05 1.00
Famous max-noise 1.07 1.19 1.13 1.09 1.79 1.01 1.00

average 1.08 1.11 1.11 1.07 4.14 1.03 1.00

4.3 Ablation Study

We evaluate several design choices we made in our approach using an ablation
study, as shown in Table 2. We evaluate the number of nearest neighbors k = 300
we use for the local patch by decreasing and increasing k by a factor of 4,
effectively halving and doubling the size of the local patch. A large k performs
significantly worse because we may lose local detail with a larger patch size, while
a small k still works reasonably well, but gives lower performance especially on
large noise settings (Famous max-noise). We also compare Points2Surf to
using a fixed radius for the local patch, with three different sizes (0.05L, 0.1L and
0.2L). A fixed patch size is less suitable than nearest neighbors when computing
the distance at query points that are far away from the surface, giving a lower
performance than the standard nearest neighbor setting. Finally, we compare
our method to using a single shared encoder for both the global sub-sample psx
and the local patch pdx, by concatenating the two before encoding them with a
single encoder. The performance of this variant is still competitive, but shows
that using two separate encoders increases performance.

5 Conclusion

We have presented Points2Surf as a method for surface reconstruction from
raw point clouds. Our method reliably captures both geometric and topological
details, and generalizes to unseen shapes more robustly than current methods.

Although the inferred SDFs are accurate far from the surface, they are noisy
near the 0-set, resulting in bumpy surfaces when processing raw point clouds.
One interesting next step would be to combine coarse reconstructions with local
surface priors to add fine scale details. We believe such an iterative and multiscale
approach would further improve the quality of Points2Surf, especially by
reducing the imperfections in fine-scale details. Finally, where we used Marching
Cubes to extract the surface from the inferred SDF, it would be interesting to
develop a differentiable version of Marching Cubes, and then jointly train SDF
estimation and surface extraction.
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