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Abstract. We investigate the problem of learning to generate 3D para-
metric surface representations for novel object instances, as seen from
one or more views. Previous work on learning shape reconstruction from
multiple views uses discrete representations such as point clouds or voxels,
while continuous surface generation approaches lack multi-view consis-
tency. We address these issues by designing neural networks capable of
generating high-quality parametric 3D surfaces which are also consistent
between views. Furthermore, the generated 3D surfaces preserve exact
image pixel to 3D surface point correspondences, allowing us to lift tex-
ture information creating shapes with rich geometry and appearance.
Our method is supervised and trained on a public dataset of shapes
from common object categories. Quantitative results indicate that our
method significantly outperforms previous work, while qualitative results
demonstrate the high quality of our reconstructions.

Keywords: 3D reconstruction, multi-view, single-view, parametrization

1 Introduction

Reconstructing the 3D shape of an object from one or more views is an important
problem with applications in 3D scene understanding, robotic navigation or
manipulation, and content creation. Even with multi-view images, the problem can
be challenging when camera baselines are large, or when lighting and occlusions
are inconsistent across the views. Recent developments in supervised deep learning
have demonstrated the potential to overcome these challenges.

Ideally, a multi-view surface reconstruction algorithm should have the following
desirable 3C properties. First, it should be able to reconstruct high-quality shapes
that can be readily used in downstream applications. While much progress has
been made in learning shape representations such as point clouds [11, 25, 37, 17],
volumetric grids [9, 39, 40], and meshes [42, 45], their geometric quality is limited
by the discrete nature of the underlying representation. Therefore, representations
such as implicit functions [32, 35, 7], and UV surface parametrizations [15, 10] are
preferable, since they can represent a continuous surface at arbitrary resolution.
Second, the algorithm should be able to reconstruct objects from a sparse set of
views while ensuring that the combined shape is consistent across the views.
Recent approaches exploit geometric constraints to solve this problem but require
additional supervision through knowledge of the exact camera geometry [5].
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Fig. 1. Pix2Surf learns to generate a continuous parametric 3D surface of an object
seen in one or more views. Given a single image, we can reconstruct a continuous partial
3D shape (top row). When multiple views are available, we can aggregate the views to
form a set of consistent 3D surfaces (bottom row). Our reconstructions preserve 2D
pixel to 3D shape correspondence that allows the transport of textures, even from real
images (last column).

Finally, the algorithm should provide exact correspondences between 2D pixels
and points on the 3D shape, so as to accurately transport object properties
(e.g., texture) directly from 2D and support aggregation across views. While
some extant methods satisfy a subset of these properties, we currently lack any
method that has all of them.

In this paper, we present Pix2Surf, a method that learns to reconstruct
continuous and consistent 3D surface from single or multiple views of novel
object instances, while preserving exact 2D–3D correspondences. We build upon
recent work on category-specific shape reconstruction using Normalized Object
Coordinate Space (NOCS) [41, 37], which reconstructs the 3D point cloud as
a NOCS map – an object-centered depth map – in a canonical space that is
in exact correspondence with image pixels. Importantly, NOCS maps do not
require knowledge of camera geometry. However, these maps do not directly
encode the underlying surface of the object. In this paper, we present a method
that incorporates a representation of the underlying surface by predicting a
continuous parametrization that maps a learned UV parameter space to 3D
NOCS coordinates, similar in spirit to AtlasNet [15]. Unlike AtlasNet, however,
our approach also provides exact 2D–3D correspondences and an emergent learned
chart that can be used to texture the object directly from the input image.

When multiple views of an object are available, we also present a version
of Pix2Surf that is capable of reconstructing an object by predicting an atlas,
i.e., view-specific charts assembled to form the final shape. While in the NOCS
approach [37] individual views can also be directly aggregated since they live in
the same canonical space, this näıve approach can lead to discontinuities at view
boundaries. Instead, for view-consistent reconstruction, we aggregate multiple
views at the feature level and explicitly enforce consistency during training.

Our approach is trained on the ShapeNetCOCO dataset [37] that contains
multiple views of thousands of object instances from ShapeNet [4], rendered with
random background images from MS COCO [27]. Extensive experiments and
comparisons with previous work show that Pix2Surf is capable of reconstructing
high-quality shapes that are consistent within and across views. In terms of
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reconstruction error, we outperform state-of-the-art methods while maintaining
the 3C properties. Furthermore, exact 2D–3D correspondences allow us to texture
the reconstructed shape with rich color information as shown in Figure 1. In
summary, the primary contributions of our work are:

– a method to generate a set of continuous parametric 3D surfaces representing
the shape of a novel object observed from single or multiple views;

– the extraction of a learned UV parametrization that retains exact 2D to 3D
surface point correspondences, allowing lifting of texture information from
the input image; and

– a method to consistently aggregate such parametrizations across different
views, using multiple charts.

Emergent Properties: A notable emergent property of our network is that
the learned UV parametrization domains are consistent across different views
of the same object (i.e., corresponding pixels in different views have similar UV
coordinates) – and even across views of related objects in the same class. This is
despite the UV domain maps only being indirectly supervised for consistency,
through 3D reconstruction.
Scope: In this work, our focus is on continuity, consistency, and 2D image–3D
surface correspondences. We focus on the case when the multi-view images have
little overlap, a setting where traditional stereo matching techniques fail. Our
method only requires supervision for the input views and their corresponding
NOCS maps but does not require camera poses or ground truth UV parametriza-
tion. We note that the generated surfaces need not be watertight, and continuity
at the seams between views is not guaranteed.

2 Related Work

There is a large body of work on object reconstruction which we categorize
broadly based on the underlying shape representation.
Voxels: The earliest deep-learning-based methods predict a voxel representation
of an object’s shape. Many of these methods are trained as generative models for
3D shapes, with a separate image encoder to obtain the latent code for a given
image [14]. Later methods use more efficient data structures, such as octrees [38,
43, 34] to alleviate the space requirements of explicit voxels. Multiple views can
also be aggregated into a voxel grid using a recurrent network [9]. Several methods
use supervision in the form of 2D images from different viewpoints, rather than a
3D shape, to perform both single-view and multi-view voxel reconstruction [19, 47,
40, 16]. These methods usually use some form of a differentiable voxel renderer to
obtain a 2D image that can be compared to the ground truth image. The quality
gap of these methods to their counterparts that use 3D supervision is still quite
large. Voxels only allow for a relatively coarse representation of a shape, even
with the more efficient data representations. Additionally, voxels do not explicitly
represent an object’s surface prompting the study of alternative representations.
Point Clouds: To recover the point cloud of an object instance from a single
view, methods with 3D supervision [11, 25] and without 3D supervision [17] have
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been proposed. These methods encode the input image into a latent code thus
losing correspondences between the image pixels and the output points. Some
methods establish a coarse correspondence implicitly by estimating the camera
parameters, but this is typically inaccurate. A recent method reconstructs a
point cloud of a shape from multiple views [6], but requires ground truth camera
parameters. A large body of monocular or stereo depth estimation methods
obtain a point cloud for the visible parts of the scene in an image, but do not
attempt to recover the geometry of individual object instances in their local
coordinate frames [3]. NOCS [41, 37] obtains exact correspondences between 2D
pixels and 3D points by predicting the 3D coordinates of each pixel in a canonical
coordinate frame. NOCS can even be extended to reconstruct unseen parts of
an object [37] (X-NOCS). All these approaches that output point clouds do not
describe the connectivity of a surface, which has to be extracted separately – a
classical and difficult geometry problem. We extend NOCS to directly recover
continuous surfaces and consistently handle multiple views.

Implicit Functions: Poisson Surface Reconstruction [22, 23] has long been the
gold standard for recovering an implicit surface from a point cloud. More recently,
data-driven methods have been proposed that model the implicit function with
a small MLP [8, 32, 31], with the implicit function representing the occupancy
probability or the distance to the surface. These methods can reconstruct an
implicit function directly from a single image, but do not handle multiple views
and do not establish a correspondence between pixels and the 3D space. PiFU [35]
and DISN [46] are more recent methods that establish a correspondence between
pixels and 3D space and use per-pixel features to parameterize an implicit
function. Both single and multiple views can be handled, but the methods either
require ground truth camera poses as input [35], or use a network to get a coarse
approximation of the camera poses, giving only approximate correspondences [46].
Furthermore, to obtain an explicit surface from an implicit function, an expensive
post-processing step is needed, such as Marching Cubes [29] or ray tracing.

Parametric Surfaces or Templates: Several methods attempt to directly
reconstruct a parametric representation of a shape’s surface. These parametric
representations range from class-specific templates [18, 24], general structured
templates [13], or more generic surface representations, such as meshes or con-
tinuous functions. Pixel2Mesh and its sequel [42, 45] deform a genus-zero mesh
based on local image features at each vertex, obtained by projecting the ver-
tices to the image plane(s). Camera parameters are assumed to be known for
this projection. 3DN [44] deforms a given source mesh to approximate a single
target image, using global features for both the source and the target, without
establishing correspondences to the target pixels. Several methods use 2D images
instead of 3D meshes as supervisory signal [21, 28, 33, 20] using differentiable
mesh renderers. This makes it easier to collect training data, but the accuracy
of these methods still lags behind methods with 3D supervision. AtlasNet [15]
represents shapes with continuous 2D patches that can be inferred from a single
input image, or from a video clip [26]. Similar to AtlasNet, we use a 2D patch as
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a UV parametrization, but we handle multiple non-adjacent views and establish
correspondences between 2D pixels and 3D surface points.

3 Preliminaries

We build our approach upon two previous ideas that we describe below.
(X-)NOCS: Normalized object coordinate space (NOCS) is a canonicalized unit

Fig. 2. Given a single image,
X-NOCS [37] reconstructs a point
cloud preserving pixel–3D corre-
spondece. AtlasNet [15] learns
shape as a continuous surface.

container space used for category-level reason-
ing of object pose, size, and shape [37, 41].
Instances from a given object category are
normalized for their position, orientation, and
size, thus disentangling intra-category shape
variation from the exact pose and size of in-
stances. NOCS maps (see Fig. 2) are perspec-
tive projections of the 3D NOCS shape onto
a specific camera and can be interpreted as
object-centered depth maps that simulta-
neously encode mask and partial shape of the
object. When used to predict 3D point cloud
from images, NOCS maps retain correspondences from 2D pixels to 3D points,
and can be used to transport image texture directly to 3D. X-NOCS is an exten-
sion of NOCS maps to also encode the occluded parts of a shape [37]. However,
using NOCS maps for reconstruction results in a discontinuous point cloud.
Surface Parametrization: A two-manifold surface in 3D can be mapped to a
2D plane (chart) parametrized by two coordinates (u, v). This UV parametriza-
tion of a 3D surface is widely used in computer graphics and, more recently, in 3D
shape reconstruction [15, 24]. The parameterization can be limited in expressing
complex shapes, depending on the functional formulation used. For example, in
typical CAD settings, low-degree polynomial or rational functions are used to
represent the mappings. In our case, instead, we use a fully connected network
to overcome the limitation of expressibility. A single map, however, still lacks of
describing complicated shapes with high-genus topology. Thus, multiple charts
are often used, where multiple 2D planar patches are mapped by separate maps
to a 3D surface – effectively partitioning the surfaces into parts, each of which is
the image of a different map in the chart. We show how a single chart can be used
for 3D shape reconstruction while multiple charts allow consistent reconstruction
over multiple views while still preserving pixel to 3D correspondence.

4 Pix2Surf: Pixels to Surface

Our goal is to predict a continuous and consistent parametric 3D surface for a
novel object instance observed from one or more views. Additionally, we would
like to preserve correspondences between 2D pixels and 3D surface points. We
first describe our approach for reconstructing a 3D surface from a single image
using a single chart, and then generalize it to multiple views using an atlas.
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Fig. 3. Single-View Single-chart Pix2Surf network architecture. The input image is
processed using an encoder-decoder architecture to predict a NOCS map, object mask,
and a learned chart (top right). The Surface Parameterization branch takes sampled and
amplified chart coordinates p and a latent image code z to predict the final continuous
surface. Unwrapped chart refers to a visualization of the learned chart visualized on
the bottom right. The colors of the input image can be transported to all intermediate
steps (orange × and arrows).

4.1 Single-View Single-Chart Pix2Surf

At inference time, the single-view version of Pix2Surf takes an RGB image
of an object observed from an arbitrary camera as input. We use a CNN to
extract image features that compactly encode object shape. The features are then
processed by two branches: (1) the NOCS-UV branch is a CNN that estimates
the shape as a NOCS map, mask and a learned UV map, and (2) the Surface
Parametrization (SP) branch is an MLP that generates a continuous 3D
surface. This single-view, single-chart architecture is shown in Fig. 3.

(1) NOCS-UV Branch: Similar to X-NOCS [37], we predict the NOCS map
and mask that encode the partial shape of the object observed in the image. We
use an encoder-decoder architecture building on top of SegNet [1] and VGG [36].
Our network uses skip connections and shares pool indices between the encoder
and the decoder. The predicted NOCS maps and masks are the same size as the
input image. During training, the object mask is supervised with a binary cross
entropy loss and the NOCS map is supervised with an L2 loss. Note that the
NOCS map here is not the final output but acts as an intermediate supervision
signal for the network.

Emergence of a Chart: Different from previous work, we predict a 2-channel
output in additional to the NOCS map and mask. These 2 channels are not
explicitly supervised during training, so the network can predict any value between
0 and 1. However, when jointly trained with the other branches, we observe the
emergence of a learned chart in these 2 channels (see Fig. 4). The network
discovers how to unwrap an object shape onto a flat surface. Remarkably,
this learned chart is (almost) consistent across multiple views and
even across instances. During reconstruction, each image pixel’s learned chart
coordinates are passed on to the SP branch. We show that using the learned
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chart coordinates is superior to using arbitrary UV coordinates like AtlasNet [15],
or alternatively using the original image coordinates (Image2Surf, Section 5.1).
Additionally, we preserve exact correspondences between input image pixels and
the learned chart.

Fig. 4. Given an object image (row 1, col 1), our
network predicts a 2-channel image without explicit
supervision (row 1, col 2, color coded). Remarkably,
the output of these two channels visualized in a UV
space (row 1, col 3) show that the network has learned
to unwrap the 3D shape onto a plane (corresponding
patches shown in red). This unwrapping is consistent
over multiple views, and even across multiple object
instances (last row).

(a) Code Extractor (CE):
We use a small CNN to re-
duce the high dimensional fea-
ture map extracted by the en-
coder to make a more compact
global code for the SP branch.
This CNN contains two convo-
lutional layers (512 and 1024
output channels), batch nor-
malization, and ELU activa-
tion. The output is a latent
code z of size 1024 and is
passed to the SP branch.

(b) UV Amplifier: Before
we use the learned chart coor-
dinates as an input to the SP
branch, we process each UV
coordinate with a UV ampli-
fier MLP. The motivation for
this comes from the informa-
tion imbalance the two inputs to the SP branch – one input is the global latent
code z which has 1024 dimensions, while the UV coordinates would have only
2 dimensions. To overcome this, we amplify the UV coordinates to p (256 di-
mensions) using a 3-layer MLP that progressively amplifies the 2 coordinates
(2, 64, 128, 256). This allows the SP branch to make use of the image and UV
information in a more balanced manner.

(2) SP Branch: Similar to AtlasNet [15], our surface parametrization (SP)
branch takes the global latent code z from the code extractor (CE) and the
amplified coordinates p as input and produces a continuous 3D position as the
output. Note that the learned chart coordinates can be continuously sampled at
inference time. The continuity of the output 3D surface emerges from universal
approximation theorem of neural networks that states that a network with at
least one hidden layer can approximate continuous functions [30]. Our SP branch
is a MLP with 9 layers and skip connection every 2 layers (input: 1024+256,
intermediate: 512, last: 3). Since we train on canonically oriented ShapeNet models,
the predicted 3D surface also lies within the canonical NOCS container [41].

Our approach has three key differences to AtlasNet. First, we use a UV
amplifier to transform the 2D UV coordinates to higher dimensions allowing
better information balancing. Second, the learned chart is in direct correspondence
with the pixels of the input image (see Fig. 4). This allows us to transport
appearance information directly from the image to the 3D surface. Third, our
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sampling of the UV chart is learned by a network (NOCS-UV branch) instead
of uniform sampling, which enables us to reconstruct complex topologies. Our
inference processing allows us to sample any continuous point in the learned chart
space within the predicted object mask allowing the generation of continuous
textured 3D surface.
Training: The encoder and decoder CNNs are first initialized by training them
separately on the NOCS map and mask prediction tasks using only the L2 and
BCE losses. Subsequently, we jointly train the NOCS-UV and SP branches, code
extractor, and UV amplifier end-to-end. The joint loss is given as,

LI = w1 (wn Ln + wm Lm) + w2 Ls, (1)

where Ln and Lm are the L2 NOCS map and BCE losses respectively, wn, wm

are the weights for the NOCS map and mask prediction respectively, and w1, w2

are the weights for the NOCS-UV and SP branches respectively. For the SP
branch we supervise on K points sampled randomly from within the foreground
mask. For each sampled point, a corresponding amplified chart coordinate p is
predicted without any supervision. This is concatenated with the global latent
code z to predict the final 3D surface position. Empirically, we found the best
hyperparameters to be: K = 4096, w1 = 0.1, w2 = 0.9, wn = 0.7, wm = 0.3. The
loss for the SP branch is given as, Ls = 1

K

∑K
i=1 ‖xi − x̂i‖2, where x and x̂

are the ground truth and predicted 3D surface position obtained from the 3D
ShapeNet models (same as ground truth NOCS map values). During inference,
we can predict a continuous 3D surface for any given image and its learned chart
coordinate. Please see the supplementary document for more details on inference
and final 3D model generation.

4.2 Multi-View Atlas Pix2Surf

The method described above is suitable when we have a single view of the object.

Fig. 5. Given 3 views, näıve aggregation of
individual charts leads to discontinuities or
double surfaces (left). Our multi-view atlas
method produces more consistent surfaces
(right), for instance, at the legs and backrest.

When multiple views are available, we
could naively extend the single view
network and combine the generated
surfaces using a union operation. How-
ever, this leads to sharp discontinuities
(Fig. 5). To overcome this issue, we pro-
pose a generalization of our single-view
single-chart method to consistently ag-
gregate 2D surface information from
multiple views, using an atlas i.e., a
separate learned chart (UV map) for
each view. Fig. 6 shows an overview of
our multi-view network. This design
shares similarities with the single view
network but has additional multi-view
consistency which is enforced both at the feature level through a feature pooling
step, and using a consistency loss for better 3D surface generation.
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Fig. 6. Multi-view atlas network architecture. The multi-view network allows multiple
charts to be consistently aggregated. This network has two main features: (1) the
MaxPool operation to pool features between views, and (2) a multi-view consistency
loss LC that ensures corresponding points produce 3D surface points that are nearby.
Only two views are shown in this figure, but we use multiple views during training and
inference. The encoder, NOCS-UV branch, CE branch, and SP branches share weights.

Multi-View Feature Pooling: The goal of this step is to promote multi-view
information sharing at the feature level (see Fig. 6). Different from the single view
network, the latent codes zi extracted for each view i (using a shared encoder
and code extractor) are maxpooled into a common shared multi-view latent code
zm. Intuitively, this shared latent code captures the most salient information
from each view.

Atlas: Similar to the single view network, we learn a chart for each view. The
chart coordinates for each view pi are extracted using the NOCS-UV branch
with weights shared between the views. Although the NOCS-UV branch weights
are shared, one chart is predicted for each view – thus, we have an atlas. Note
that the network is free to predict different chart coordinates for each view.
However, we observe that similar parts of objects in different images map to
similar locations on their respective charts. This indicates that our network is
discovering the notion of image correspondence. As in the single-view
network, chart coordinates are passed through a shared UV amplifier.

We concatenate the shared latent code zm to each of the per-view latent codes
zi. This concatenated multi-view code and the learned per-view chart coordinates
pi are passed to the SP branch. The UV amplifier, code extractor and structure
of the learned UV map are similar to the single view network.

Multi-View Loss: In addition to the L2 loss function on the 3D surface gen-
erated by the SP branch, we also have a multi-view consistency loss. This loss
enforces corresponding points on multiple views to predict similar 3D surface
positions. To obtain correspondence information at training time, we sample
a random set of foreground points within the mask and find the exact match
of the ground truth NOCS values of that pixel in the other input views. Note
that this correspondence information is not provided as additional supervision
– the ground truth NOCS maps already contain this information since corre-
sponding points multiple views have the same NOCS position. Given these
correspondences, the multi-view consistency loss for a pair of views is given as,
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LC = 1
|P|

∑
(i,j)∈P ‖xi − xj‖2, where xi,j are the paired predicted xyz from two

different views and the set P contains all matched correspondence pair from
every possible selection of two views. During training, within each mini-batch,
we sample multiple views per object and compute the loss for all possible pairs.

Training: The multi-view network is trained similar to the single view model.
The NOCS-UV branch is first trained and subsequently the whole network
is trained end-to-end. The loss function we use is LM = LI + w3

a

∑a
j=0 LC ,

where a denotes the number of pairs of views within that batch, and w3 is the
correspondence loss weight empirically set to 0.9. Please see the supplementary
document for more details on inference and final 3D model generation.

5 Experiments

We present extensive experimental comparison of Pix2Surf with several recent
single- and multi-view reconstruction methods, and validate our design choices.
We do so by focusing on the 3C properties (consistency, correspondence and
continuity) for visible surface reconstruction (Section 5.1) and ablations (Sec-
tion 5.3). Since we learn a strong prior over shapes, we can also estimate surfaces
that are hidden in the input image (Section 5.2).

Dataset: For quantitative comparisons, we use ShapeNetPlain [37] dataset
which consists of 5 random views for each shape in ShapeNet [4] with a white
background. For additional robustness to the background found in real-world
images, we train Pix2Surf on ShapeNetCOCO [37] which consists of 20 random
views of each ShapeNet object with a random background from MS COCO [27].
We use this dataset for all qualitative results and for real-world results.

Experimental Setting: We follow the experimental setup of X-NOCS [37].
Our ground truth for each input image is the point cloud represented by the
NOCS map (or X-NOCS map for hidden surface) provided in the dataset [37].
The output of all methods are converted to a NOCS map (using the ground truth
camera pose) allowing us to compute metrics even for partial shapes. Multi-view
experiments use all 5 views in the dataset to reconstruct a surface, using the
same dataset as the single-view experiments. All metrics are computed per-view
and the averaged up, making the single- and multi-view values comparable in
our quantitative experiments.

Metrics: We quantify the quality of reconstructed surfaces with several metrics.
The reconstruction error of predictions is computed as the Chamfer distance [2,
12] between the estimated surface and the ground truth NOCS map (interpreted
as a point cloud). To obtain points on a reconstructed surface, we convert it into
a NOCS map using the ground truth camera pose.

In addition to the accuracy of reconstructed surfaces, we quantify the 3C
properties of a surface with the following metrics. The 2D–3D correspondence
error measures the accuracy of the estimated correspondence between input
pixels and 3D points on the reconstructed surface. The error for each foreground
pixel is the distance between the estimated 3D location of the pixel and the
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Table 1. Visible surface reconstruction. We compare our method to a baseline and
three state-of-the-art methods evaluating reconstruction accuracy and the 3C properties.
The top half of the table shows single-view reconstruction, the bottom half is multi-view
reconstruction. Note how Pix2Surf is close to the top performance in each of the metrics,
while all other methods have significant shortcomings.

Recons. Error ↓ Correspond. Error ↓ Consistency Error ↓ Continuity Score ↑

car chairplaneavg. car chairplane avg. car chair plane avg. car chairplane avg.

Im.2Surf 2.23 3.81 2.66 2.90 8.49 9.54 8.76 8.93 13.08 12.55 10.75 12.13 0.13 0.26 0.05 0.14
X-NOCS 2.25 2.95 2.08 2.43 12.82 8.63 8.93 10.13 18.93 12.00 10.59 13.84 0.24 0.39 0.23 0.29
AtlasNet 1.54 3.36 3.15 2.68 – – – – – – – – 0.59 0.34 0.54 0.49
Pix2Surf 1.67 1.91 1.61 1.73 9.52 5.79 7.19 7.50 12.72 7.75 8.48 9.65 0.46 0.38 0.57 0.47

X-NOCS 2.89 2.80 2.19 2.63 14.30 9.48 8.95 10.91 22.18 14.26 11.65 16.03 0.58 0.40 0.15 0.38
P2M++ 2.88 5.59 3.24 3.90 – – – – – – – – 0.57 0.31 0.54 0.47
Pix2Surf 1.41 1.78 1.38 1.52 8.49 5.84 7.06 7.13 10.98 6.65 7.50 8.38 0.41 0.37 0.55 0.44

ground truth location. Unlike the Chamfer distance, this uses the 2D–3D corre-
spondence to compare points. We average over all foreground pixels to obtain
the correspondence error of a surface. The multi-view consistency error was
defined in Section 4.2 as the 3D distance between corresponding points in dif-
ferent views. We average the distance for a given point over all pairs of views
that contain the point. Corresponding points are found based on the ground
truth NOCS map. The continuity is measured by the accuracy of the surface
connectivity. The reconstructed surface should have the same C0 discontinuities
as the ground truth surface. We define a C0 discontinuity as large difference in
the 3D locations of the neighboring pixels in a NOCS map (above a threshold
of 0.05). We take a statistical approach to measure the surface connectivity, by
computing a histogram over the 3D distances between neighboring pixels that
are discontinuous. The continuity score is the correlation of this histogram to
a histogram of the ground truth surface. A higher continuity score indicates a
distribution of discontinuities that is more similar to the ground truth surface.

5.1 Visible Surface Reconstruction

We compare the quality of single- and multi-view reconstructions to one baseline
[Image2Surf (single-view)], and three state-of-the-art methods [AtlasNet [15]
(single-view), X-NOCS [37] (single- and multi-view), Pixel2Mesh++ [45] (multi-
view)]. Note that Pix2Surf deals with a more challenging problem compared to
AtlasNet and Pixel2Mesh++: (1) we predict 2D–3D correspondences (AtlasNet
does not), and (2) we do not require camera geometry information as input
(Pixel2Mesh++ does). In this section, we only focus on reconstructing visible
surfaces, but we also report hidden surface generation in the next section.

The single-view performance of each method in all of our metrics is shown in
the first four rows of Table 1, and the multi-view performance in the last three
rows. Metrics are comparable across single- and multi-view methods. For each
of the four metrics, we show the performance on each dataset category, and an
average over all categories.
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Image2Surf : This baseline is similar to Pix2Surf, but takes image UV coordi-
nates (normalized by predicted mask) as input to the UV amplifier instead of the
learned UV chart, i.e., the input image is the chart. We observe that it is hard for
the network to learn depth discontinuities, resulting in over-smoothed occlusion
boundaries (see supplementary document). The over-smoothing is reflected in a
high reconstruction error, and particularly low continuity correlation score. This
comparison justifies our design to include a learned UV chart.

X-NOCS: This is a state-of-the-art reconstruction method that predicts a 3D

Fig. 7. Our results (left) compared with
surface-agnostic X-NOCS (right), visualized
with image connectivity. Pix2Surf produces
significantly smoother results.

point cloud, i.e., a 3D point for each
foreground pixel. Since X-NOCS has
no notion of surface connectivity, there
is no coordination between neighbor-
ing points, resulting in poor recon-
struction accuracy and noisy output
point clouds (see Fig. 8).

AtlasNet: This method also uses an
explicit surface parametrization, giving it a high continuity score and a low
reconstruction error on the Car category. However, since the parametrization
is not learned and has a fixed layout and connectivity, the reconstruction error
increases significantly for categories with more complex shapes and topologies,
such as Chair and Airplane. Correspondence and continuity are not evaluated,
since AtlasNet lacks pixel-to-point correspondences.

Pixel2Mesh++: This method deforms a given starting mesh in a coarse-to-fine
approach to approximate an object shown from multiple views. In each refinement
step, a mesh vertex is deformed based on a small image neighborhood around
the projection of the vertex in each view. Unlike in our method, ground truth
camera positions need to be known for this projection. The fixed connectivity
and topology of the starting mesh results in a high continuity score on the car
category, where the shapes are topologically simple, but similar to the other
baselines, results in a higher reconstruction error. Since correspondence and
multi-view consistency are trivial given a ground truth camera model, we do not
evaluate these properties.

Unlike the previous methods, Pix2Surf learns a parametrization of the sur-
face that does not have a fixed topology or connectivity. This gives us more
flexibility to approximate complex surfaces, for instance, to correctly place holes
that can model C0 discontinuities. This explains our high continuity correlation
scores which also benefits the accuracy of reconstruction and 2D-3D correspon-
dence. In the multi-view setting, Pix2Surf shares information across the views,
improving the overall reconstruction accuracy. For example, surfaces that are only
visible at a very oblique angle in one view can benefit from additional views. Our
use of a consistency loss additionally ensures an improvement of the multi-view
consistency over the baselines, and a lower consistency error compared to single
view Pix2Surf (Fig. 5). We observe that Pix2Surf is the only method that has
top performance on all quality metrics (reconstruction and 3C properties), all
other methods reconstruct surfaces that fall short in at least some of the metrics.
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Table 2. We compare the reconstruction error
of visible and hidden surfaces (trained jointly)
for Pix2Surf and X-NOCS [single view (sv.) and
multi-view (mv.)]. The learned parametrization of
Pix2Surf also benefits from hidden surface genera-
tion, and the additional reconstruction of the hid-
den surface does not adversely affect the accuracy
of the visible surfaces.

Visible Error ↓ Hidden Error ↓

car chairplaneavg. car chairplaneavg.

X-NOCS (sv.) 2.25 2.95 2.08 2.43 1.86 3.34 2.25 2.48
X-NOCS (mv.) 2.89 2.80 2.19 2.63 3.11 3.32 2.03 2.82
Pix2Surf 1.66 2.01 1.66 1.78 1.52 2.47 1.77 1.92

Table 3. We experimentally ver-
ify the usefulness of NOCS map
regression and the UV amplifier.
NOCS map regression provides in-
termediate supervision while the
UV amplifier balances informa-
tion. Here we report average re-
construction error computed on
the visible part (equal training
epochs for all methods).

No UV
Amp.

No
NOCS

Pix2Surf

Chair 10.37 3.64 2.61

5.2 Hidden Surface Generation

Since Pix2Surf learns a strong prior of the shapes it was trained on, we can
generate plausible estimates for surfaces in parts of the object that are not

Fig. 8. Pix2Surf can reconstruct
both visible (textured) and hidden
parts (color coded).

directly visible in the image. Similar to X-
NOCS, we represent a 3D object with two
layers: a visible layer that we reconstruct in
the experiments described previously, and a
hidden layer denoting the last intersection of
camera rays [37]. Pix2Surf can be easily ex-
tended to reconstruct hidden surface farthest
from the camera by adding additional output
channels to the NOCS-UV branch. The rest
of the architecture remains the same with the
learned UV parametrization additionally also
learning about the hidden surface. In Table 2,
we show our performance when jointly reconstructing the visible and hidden
surfaces from an image. We compare to both the single- and multi-view version
of X-NOCS on all categories. The improvement in accuracy for our method
shows that hidden surfaces benefits from our learned parametrization as well.
Comparing the performance of the visible surface reconstruction to Table 1, we
see that the joint reconstruction of visible and hidden surfaces does not decrease
the reconstruction accuracy of the visible surfaces.

5.3 Ablations and Real Images

We provide an analysis and justification of several key design choices. First, we
analyze the importance of using a learned UV chart instead of a fixed chart
like Image2Surf. As seen in Section 5.1 and Table 1, Pix2Surf outperforms
Image2Surf on all categories for reconstruction error. Second, we analyze the
utility of multi-view feature pooling and consistency loss. As seen in Table 1 (rows
4–7), these two features significantly improve performance. We also justify the
use of intermediate NOCS map regression by the NOCS-UV branch, and the need
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for the UV amplifier (Table 3). We do so by examining networks without these
two components. For the NOCS map ablation, we train the network from scratch
without pretraining the NOCS-UV branch, and for the UV amplifier ablation,
we directly input the learned UV coordinates to the SP branch and increase the
dimension of a latent image code to 256. When conducting the experiments on
the chair category, the results (Table 3) show that these components help learn
better reconstructions.

Since we train Pix2Surf on ShapeNetCOCO [37], we can also directly test
on real images. Some example real image results are shown in Fig. 1 and the
supplementary document. We also include more qualitative results and visual
comparisons in Table 4.
Limitations: As discussed in the introduction, we limit the scope of our work to
continuity only per view and cannot guarantee watertight models when multiple
views are used. We also leave the exploration of RGB-D data in this setting to
future work.

Table 4. More qualitative results of our method and comparison with ground truth,
AtlasNet, and Pixel2Mesh++. Unlike other methods Pix2Surf can generate 3D shapes
with realistic appearance thanks to exact 2D pixel to 3D point correspondence.

View 1 View 2 View 1

Single
View

Multi-
View

Ground
Truth

Single
View

Multi-
View

Ground
Truth

Atlas
Net

Pixel2
Mesh++

6 Conclusion

We have presented Pix2Surf, a method for predicting 3D surface from a single- or
multi-view images. Compared with the previous work, Pix2Surf simultaneously
achieves three properties in the prediction: continuity of the surface, consis-
tency across views, and pixel-level correspondences from the images to the
3D shape. By attaining these properties, our method enables the generation of
high-quality parametric surfaces, readily integrating the output surfaces from
multi-views, and lifting texture information from images to the 3D shape. In
future work, we will explore ways of guaranteeing continuity even across different
different views and improving the quality of mapped textures. A longer-term goal
would be to investigate how the network can generalize across multiple categories.
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