
Edit Propagation using Geometric Relationship Functions
PAUL GUERRERO
Vienna University of Technology, KAUST
and
STEFAN JESCHKE
IST Austria
and
MICHAEL WIMMER
Vienna University of Technology
and
PETER WONKA
KAUST

We propose a method for propagating edit operations in 2D vector graph-
ics, based on geometric relationship functions. These functions quantify the
geometric relationship of a point to a polygon, such as the distance to the
boundary or the direction to the closest corner vertex. The level sets of the
relationship functions describe points with the same relationship to a poly-
gon. For a given query point we first determine a set of relationships to
local features, construct all level sets for these relationships and accumulate
them. The maxima of the resulting distribution are points with similar geo-
metric relationships. We show extensions to handle mirror symmetries, and
discuss the use of relationship functions as local coordinate systems. Our
method can be applied for example to interactive floor-plan editing, and is
especially useful for large layouts, where individual edits would be cum-
bersome. We demonstrate populating 2D layouts with tens to hundreds of
objects by propagating relatively few edit operations.

Categories and Subject Descriptors: I.3.5 [Computer Graphics]: Compu-
tational Geometry and Object Modeling—Modeling Packages

General Terms: Edit propagation

Additional Key Words and Phrases:

ACM Reference Format:

This research was partially funded by KAUST and the Austrian Sci-
ence Fund (FWF) projects no. P 24352-N23 and P 24600-N23. Authors
addresses: P. Guerrero; email: paul@cg.tuwien.ac.at S. Jeschke; email:
sjeschke@ist.ac.at M. Wimmer; email: wimmer@cg.tuwien.ac.at P. Wonka;
email: pwonka@gmail.com
Permission to make digital or hard copies of part or all of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
show this notice on the first page or initial screen of a display along with
the full citation. Copyrights for components of this work owned by others
than ACM must be honored. Abstracting with credit is permitted. To copy
otherwise, to republish, to post on servers, to redistribute to lists, or to use
any component of this work in other works requires prior specific permis-
sion and/or a fee. Permissions may be requested from Publications Dept.,
ACM, Inc., 2 Penn Plaza, Suite 701, New York, NY 10121-0701 USA, fax
+1 (212) 869-0481, or permissions@acm.org.
c© YYYY ACM 0730-0301/YYYY/13-ARTXXX $10.00

DOI 10.1145/XXXXXXX.YYYYYYY
http://doi.acm.org/10.1145/XXXXXXX.YYYYYYY

1. INTRODUCTION

Fig. 1. To find good positions for the bench (red) on the deck of the ship,
many geometric relationships to the deck and the objects on the deck have
to be taken into account. A naive approach using a local coordinate sys-
tem based on boundary distance and boundary arc length (center – for more
information see Section 8) does not result in acceptable positions. Our ap-
proach (right) is flexible in its use of relationships, giving better positions.

In recent years, flexible and user-assisted editing systems have
become an important research direction in computer graphics. In
particular, the question of example-based editing has gained inter-
est: when a user applies a change to a given scene, how can other,
similar changes be applied to the scene automatically. This touches
on the question of shape similarity and coordinate systems: to prop-
agate a change to other parts of a scene, we need to find those parts
that are similar to the part that has been edited; furthermore, we
need to find the exact location where the change should be applied
in a particular similar part. For the latter problem, different “lo-
cal” coordinate systems have been proposed in animation and ge-
ometric modeling. These coordinate systems can be used to trans-
fer a position in one polygon to another polygon. Examples include
mean-value coordinates [Hormann and Floater 2006] and harmonic
coordinates [Joshi et al. 2007]. However, these systems work best
in shape interpolation, where the basic topology of the shapes that

ACM Transactions on Graphics, Vol. VV, No. N, Article XXX, Publication date: Month YYYY.

2 • P. Guerrero et al.

...

Fig. 2. We propose a method to propagate edit operations in 2D scenes. Objects can be propagated between general polygons of arbitrary shape while still
giving plausible results. Our method can be used to place a large number of objects in 2D layouts using relatively few edit operations.

provide the reference frame varies only little. Also, coordinate sys-
tems typically encode the notion of distance, but are not flexible
enough to represent other geometric relationships.

In this paper, we introduce a new method for edit propagation in
2D scenes that is more flexible and general than previous methods.
It is based on the notion of geometric relationships between shapes
and so-called poses, which we define as a location with an associ-
ated direction vector. While for example 2D Cartesian coordinates
uniquely associate two values (coordinates) with every point in the
plane, which represent the distance from one of the coordinate axes,
our method can handle an arbitrary number of geometric relation-
ships, and the mapping to points in the plane need not be unique.
This allows introducing geometric relationships that do not depend
on distance alone (like the relative direction with respect to a fea-
ture in the scene), and abandons those concepts from coordinate
systems that are not required in our setting of edit propagation (see
Figure 1).

Our current setup focuses on object placement, hence the choice
of poses as main interaction element. A pose can represent an object
(e.g., a furniture item) and its orientation in a room. Furthermore,
we concentrate on geometric relationships as structuring element
rather than similarity between the underlying polygons. This often
gives plausible matches even if the degree of similarity is low, as
different types of geometric relationships can be taken into account.
See Figure 2 for an example of the proposed work flow.

2. RELATED WORK

This work is related to scene modeling by example, analyze-and-
edit approaches as well as coordinates.

Scene modeling by example. The goal of this work is to re-
duce the manual design workload for populating complex environ-
ments with objects. It shares this goal with previous modeling-by-
example approaches that synthesize mostly indoor scenes. In some
related work [Fisher et al. 2012; Fisher et al. 2011; Yu et al. 2011],
structural relations (such as spatial, hierarchical, or pairwise rela-
tionships; or ergonomic factors such as visibility and accessibil-
ity) and probabilistic models are learned from a database of exam-
ple scenes. From these, new scenes are automatically synthesized.
For specific applications such as interior design, synthesis can also
build on special design guidelines [Merrell et al. 2011] including
functional and visual criteria, some of them geometric in nature as

in this work. Another way to populate virtual environments is to
formulate a valid space of layouts via specialized probability dis-
tributions together with constraints [Yeh et al. 2012] and to sample
this space appropriately to derive plausible scenes.

In contrast to the above approaches, which mostly synthesize
complete scenes, in this paper, individual user edits are propagated
to reduce the manual workload. In doing so, we rely on general
geometric principles, object labelings and optionally a hierarchi-
cal scene decomposition. Therefore, our idea is still applicable if
no specific design principles can be formulated nor example scene
databases are available. Instead, scene information is incrementally
created and updated directly during modeling, i.e., when objects
are successively placed.

Analyze-and-edit approaches. Analyze-and-edit approaches
[Gal et al. 2009; Zheng et al. 2011; Zheng et al. 2012; Bokeloh
et al. 2012; Bokeloh et al. 2011] derive some general geometric
properties from a given object. These are reinforced after local ed-
its by propagating the edit to similar parts of the entire object. The
analysis phase can include the extraction of one-dimensional fea-
tures [Gal et al. 2009] and learn their individual characteristics and
mutual relations. It can also be a model decomposition into mean-
ingful components together with certain control degrees of freedom
for each component [Zheng et al. 2011]. During editing, structural
relations are maintained after local changes by propagation to other
features or components.

This work also extracts local information around newly placed
objects, and it uses these together with a set of geometric principles
to propagate the edits. However, this work focuses on placement
of objects in complex scenes, rather than geometric deformation
propagation within single objects.

Coordinates. This work also makes use of local coordinate sys-
tems to relate positions in space to the surrounding objects. Dif-
ferent local coordinates like for example mean value coordinates
[Hormann and Floater 2006] or harmonic coordinates [Joshi et al.
2007] and several others [Lipman et al. 2008; Weber et al. 2012]
have been defined in animation and geometric modeling for similar
purposes. However, the source and target locations we are consid-
ering may have a varying local object count, type, and shape, thus
rendering the above purely distance-based coordinates not flexible
enough. To overcome this problem, we extend and enrich coordi-
nates with semantic information as detailed further below.

ACM Transactions on Graphics, Vol. VV, No. N, Article XXX, Publication date: Month YYYY.

Edit Propagation using Geometric Relationship Functions • 3

Fig. 3. The main steps of our method. First, a query point is placed (plant) and important features are identified (purple). Then the relationship functions to
the important features are evaluated (red dotted lines). Level sets for each feature and relationship function are constructed (red lines) and accumulated in pose
space. The resulting maxima correspond to poses that have similar relationship function values as the query point.

3. OVERVIEW

Fig. 4. A human intuitively finds the blue correspondences in the output
polygons for the red point specified in the input polygon.

The starting point for this work was our observation that most
humans have an intuitive idea of how to transfer points between
polygons. In Figure 4, for example, a human would be likely to
pick the blue points as correspondences to the specified red point.
Currently there is no computational tool available that could do
the same. Generalizing this research problem to include multiple
polygons and directions, we obtain the following research question:

Given a scene consisting of a set of polygons A = A1, . . . , An,
and a query poseQ = (Qp, Qd), defined by a point and a direction,
determine a number of poses P1, . . . , Pn that have a local neigh-
borhood that is “similar” to Q.

In Section 4, we will introduce our notion of similarity. It is based
on so-called relationship functions, which assign a numeric value
to a certain geometric relationship between a pose and a feature in
the scene. Features can be the polygons themselves, their individual
corners, a certain segment, etc. Examples of relationship functions
include the distance of the pointQp in the query pose to a polygon,
or the angle by which Qp is offset from the bisector of a polygon
corner.

Given a query pose and a set of polygons, our algorithm has the
following steps (see Figure 3):

(1) Identify features in the scene (Section 4.1).
(2) Evaluate the relationship functions (Section 4.2) for selected

features, called input features.
(3) For each relationship function and each feature, find the loca-

tions/poses in the scene which would give a similar function
value as the query point. Basically, this corresponds to con-
structing a level set in “pose space” (Section 6.1) for each re-
lationship function around a feature that is “compatible” to the
input feature – we call these the output features.

(4) Combine the level sets in pose space based on two weighting
factors (Section 5):
—the local importance, i.e., how relevant is the input feature

to the query point for a given relationship function, and
—the matching accuracy, i.e., how closely does the output fea-

ture match the input feature.

(5) Find local maxima in pose space (Section 6.2) – these corre-
spond to the desired poses that share as many of the defined
relationships with the query pose as possible.

We also describe an extension to handle mirror symmetries
present in the scene geometry (Section 7), and we describe how
specific geometric relationships can be specialized to form local
coordinate systems with respect to features in the scene (Section 8).
The application case of floor-plan editing is described in Section 9,
which also includes useful extensions like probabilistic placement
and feature selection, labels and hierarchies to restrict matching,
and pose validation to avoid intersections in the result.

4. GEOMETRIC RELATIONSHIPS

In this section, we formally introduce the concept of geometric rela-
tionships, and the related geometric features and relationship func-
tions. As discussed in Section 3, we start with a scene A and a
query pose Q in a pose space P. The pose space is the set of poses
of interest, usually encompassing the scene and all angles from 0
to 360 degrees.

4.1 Features

Geometric relationships operate on features, therefore the first step
is to extract features from the scene. The main features are the poly-
gons in the scene themselves, and the elements of the boundary
of the polygon. We assume that the polygon boundary consists of
“smooth” segments, i.e., sequences of edges with non-sharp angles,
connected by “sharp” corners. We therefore use the following fea-
tures:

—a polygon A, defined by a sequence of vertices vk, k ∈
{1, . . . , nA},

—a polygon segment sj ∈ A, defined as sub-sequence of consec-
utive smooth vertices sj = va, . . . , vb, a, b ∈ {1, . . . , nA}. A
vertex is called smooth if the dot product of its adjacent edges is
above a threshold (vk+1−vk

||vk+1−vk ||
· vk−vk−1
||vk−vk−1||

> ε), otherwise it is
called sharp.

ACM Transactions on Graphics, Vol. VV, No. N, Article XXX, Publication date: Month YYYY.

4 • P. Guerrero et al.

corner distance,
corner ratio

boundary distance segment distance,
segment arc length

corner angleboundary angle segment angle

Rbd

Rba

Rcr

Rcd

Rca Rsa

Rsl

Rsd

po
si

tio
na

l
di

re
ct

io
na

l

Fig. 5. Relationship functions between a polygon and a query pose (red).
Features (purple) from left to right column: polygon, corner and segment.
The top row shows all positional relationships, the bottom row all direc-
tional relationships. One positional and one directional relationship of the
same column are used to form pairs of relationships.

—a corner cj of a polygon, defined by a vertex vkj that is shared
by two adjacent segments sj−1 and sj . Corners correspond to
sharp vertices. In practice, the bisector cb of the corner and the
opening angle cα will be relevant, as they are related to the di-
rection vector of the query pose.

4.2 Relationship Functions

Given a set of features F and pose space P, we define a relationship
function as a functional on features and poses:

R : P×F→ R.
Each relationship function expresses a geometric relationship be-

tween a feature and a pose in a numeric way. Relationships include
distance of a pose from a feature, but also angle between a pose
and the feature. In the following, we list the geometric relationship
functions that we use (see Figure 5). For convenience, we define
the angle between vectors as ∠(a, b) = arccos(a/||a|| · b/||b||).
—The boundary distance is defined as the minimum distance be-

tween the query point and a polygon boundary: Rbd(Q,A) =
minx∈b(A) d(Qp, x), where b(A) is the boundary of A.

—The segment arc length is the normalized arc length between
the location of minimum distance to the query point and the start
of the segment. If x = argminx∈b(sj) d(Qp, x), then Rsl =
tx−ta
tb−ta

, where tx is the arc length at x and ta, tb the arc length at
the start and the end of the segment, respectively.

—The segment distance Rsd(Q, e) is the same as the boundary
distance, but considers only a segment s ∈ A.

—The corner distance is the distance between the query point and
a polygon corner: Rcd(Q, cj) = d(Qp, vkj).

—The corner ratio is the angle that the direction from corner to
query point makes with the start of the first polygon segment
adjacent to the corner, normalized with the opening angle of the

corner: Rcr(Q, cj) =
∠(Qp−vkj

,vkj−1−vkj
)

∠(vkj+1−vkj
,vkj−1−vkj

)
.

—The boundary angle is the angle between the pose direc-
tion and the direction of the polygon boundary at the loca-

tion of minimum distance to the query point. So if x =

argminx∈b(A) d(Qp, x), then Rba(Q,A) = ∠(d b(A)
dt

, Qd),
where t is a parametrization of the polygon boundary by arc
length.

—The segment angleRsa(Q, e) is the same as the boundary angle,
but considers only a segment s ∈ A.

—The corner angle is the angle between pose direction and the
direction from corner to query point: Rca(Q, cj) = ∠(Qp −
vkj , Qd).

The first five relationship functions are called positional, because
they depend only on the position of the query pose. The other three
are called directional, as they depend also on the direction of the
query pose. Which of those relationships are actually applied de-
pends on the application scenario, and more general relationships
can be used. Later, we will always combine a positional with a di-
rectional function to clearly define similar poses. For this purpose
we assign one directional relation Rd to each positional relation
Rp. For the relationships defined above, we assign each Rfd, Rfr
or Rfl the corresponding Rfa where f ∈ {b, s, c} according to
the type of feature. This set of relationship functions works well
in practice, but we can easily remove or add additional functions
to the set. For a discussion of the influence of individual relation-
ships on the final result and an example of an additional relationship
function see Section 10.1.

5. POSE MATCHING IMPORTANCE

In order to find poses in the scene whose neighborhood matches
the query pose, we evaluate both a local importance and a matching
accuracy.

5.1 Local Importance

The local importance determines how important features near the
query pose (i.e., input features) are for determining matching poses.
It is therefore again a functional on features and pose space:

Il : P×F→ R.

However, while a relationship function is used to determine the
location of poses with similar geometric relations to the query pose,
the importance is used to determine the influence each surrounding
feature has with respect to a geometric relationship in the final se-
lection of matching poses.

There are many possible importance functions, including seman-
tic weightings assigned by the user, but in our current implementa-
tion we simply use a weight based on the normalized distance to the
feature, as defined already by the relationships functions involving
distance:

Il(Q,F) = 1−min(1, Rfd(Q,F)/n(AF)),

where the normalization factor n(AF) is the radius of the largest
circle inscribed in the polygon corresponding to feature F forQ in-
side the polygon, or twice the radius of the smallest circle enclosing
the polygon forQ outside the polygon, and f ∈ {b, s, c} according
to the type of feature. This reflects the fact that features close to
the query pose should have stronger influence on the matching than
features farther away.

5.2 Matching Accuracy

The matching accuracy determines whether a “distant” candidate
feature for matching (i.e., an output feature) resembles a local fea-
ture that has been determined important to the query pose. For

ACM Transactions on Graphics, Vol. VV, No. N, Article XXX, Publication date: Month YYYY.

Edit Propagation using Geometric Relationship Functions • 5

example, if the query point is positioned near a window-shaped
polygon, other window-shaped polygons in the scene will re-
ceive higher weighting in the subsequent matching algorithm. The
matching accuracy is a functional on features:

Im : F×F→ R.

Obviously, if the two features are not of the same type, a value of
0 should be assigned. In our implementation, we use the following
matching accuracies:

—for polygons, the similarity of polygon areas: Im(A1, A2) =
min(a(A1), a(A2))/max(a(A1), a(A2)), where a(A) denotes
the area of polygon A.

—for segments, the similarity of segment lengths and curvatures:
Im(s1, s2) =

min(t(s1),t(s2))
max(t(s1),t(s2))

∗ (max(η̃1, η̃2)− |η̃1−η̃2|
max(η̃1,η̃2)

),
where t(si) is the arc length of segment si and η̃i is the average
curvature of the segment.

—for corners, the similarity of opening angles:
Im(c1, c2) = |cα1 − cα2 |/π.

Note that there are many possible matching functions, includ-
ing symmetry-based and semantics-based ones. For example, the
matching could be further restricted according to labels assigned to
polygons, e.g. matching only features that fulfill some conditions
on the labels, as will be shown in Section 9.

6. MATCHING ALGORITHM

6.1 Theory

In this section, we discuss the algorithm that computes potential
matching poses from the query pose. We assume a set R of rela-
tionship functions to be given, as well as a set F of features. The
main idea is to determine for each triple of relationship functionR,
“local” feature Fl and candidate matching feature Fm all poses in
the scene that have a similar function value as the query point. In
other words, we want to find the level set

L(R,Fl, Fm) = {P ∈ P|R(P,Fm) = R(Q,Fl)}.
In order to combine the potential candidate poses generated by

different relationship functions, local and matching features, we
accumulate their level sets in pose space according to local im-
portance and matching accuracy. There are two ways to combine
candidate poses: We can either intersect different level sets, or we
can accumulate their importance.

Intersect:. We note that level sets of positional relationships
Rp ∈ Rp are independent of the angle and therefore span the en-
tire angular dimension at each position, while level sets of direc-
tional relationships Rd ∈ Rd span the entire positional domain. To
obtain level sets of finite extent, we intersect the level set of each
positional relationship Rp of a pair (Fl, Fm) with the level set of
its associated directional relationship R̂d:

L̂(Rp, Fl, Fm) = L(Rp, Fl, Fm) ∩ L(R̂d, Fl, Fm).

Accumulate:. For each pose, we accumulate the importances
of the intersected level sets to obtain a final importance I , where
for each relationship we only take the best match:

I(P,Q) =
∑
Fl∈F

Il(Q,Fl)

∑
R∈Rp

max
Fm∈F

(
Im(Fl, Fm)1L̂(R,Fl,Fm)(P)

)
,

where 1X is the characteristic function of set X . The candidate
poses we are looking for are then the local maxima of I . Figure 6
illustrates this process.

6.2 Finding Maxima of I

In practice, the definition of I makes a computation of local max-
ima computationally unwieldy, since pose space is both continuous
and three-dimensional (2D location and 1D direction). In order to
solve this problem, we make two simplifications:

—We accumulate importance in 2D, regardless of the directional
information of poses, and maintain a direction of maximum im-
portance during the accumulation.

—We discretize the 2D location space.

For this, we first calculate the projection Lp of the level set onto
2D location space:

Lp(R,Fl, Fm) = {Pp|P ∈ L(R,Fl, Fm)}

and compute the positional importance Ip only in 2D space:

Ip(Pp, Q) =
∑
Fl∈F

Il(Q,Fl)

∑
R∈R

max
Fm∈F

(
Im(Fl, Fm)1L̂p(R,Fl,Fm)(Pp)

)
.

For the directional information, we have to employ an approx-
imation. When accumulating in 2D location space, the directional
information of the accumulation is lost and we cannot obtain the
direction of maximum accumulated importance at each position.
Instead of accumulating, we use the direction of the level set with
maximum importance at any given position. To express this math-
ematically, we introduce a directional importance Id defined in full
3D pose space, which, however, is only needed to formally express
the result:

Id(P,Q) = max
Fl∈F

Il(Q,Fl)

max
R∈Rp

max
Fm∈F

(
Im(Fl, Fm)1L̂(R,Fl,Fm)(P)

)
,

φmax(Pp) = argmax
φ∈[0,...,2π]

Id((Pp, φ), Q).

Note that φmax may not be the same direction found when ac-
cumulating in the full 3D pose space. However there are only dif-
ferences in special cases and the 2D approximation does not lead
to unintuitive results. For a discussion see Section 10.1.

6.3 Implementation

The evaluation of Ip and φmax is carried out on a 2D regular grid.
In practice, this corresponds to a rasterization of the level sets onto
a grid. In all our examples, the grid has approximately 100k grid
points in total, with the aspect ratio adapted to the extent of the
scene. We generate the level sets by rasterizing simple primitives
like circles for the corner distance or lines for the segment arc
length. For the boundary distance relationship function, we com-
pute a polygon offset by taking the Minkowski sum [Behar and
Lien 2011] of the polygon boundary with a circle, and rasterize this
polygon offset. In order to avoid aliasing and to increase robustness
(e.g., to account for inaccuracies in the input geometry), we replace
the binary characteristic function 1X of the level set by a filter ker-
nel kX , which slightly dilates the level set. In our examples, we use
a linear falloff with a small fixed radius.

ACM Transactions on Graphics, Vol. VV, No. N, Article XXX, Publication date: Month YYYY.

6 • P. Guerrero et al.

+ + + ... =

R (Q,F)bd RbdRcrtable (Q,F)corner (Q,F)room

Fig. 6. Accumulation of level sets (red) of the relationship functions. The level sets of the relationships of the red query pose to local features are accumulated.
The maxima of the resulting distribution are poses that have similar function values as the query point. The text below the figure denotes which relationship
was used to create the level sets. The rightmost image shows the result of the accumulation as heat map.

The result of this step is a 2D grid with an importance value Ip
and a direction φ attached to each grid cell. The best candidate lo-
cations are then found by applying non-maximum suppression [Gil
and Werman 1993] on the importance grid. The resulting maxima
are then sorted according to their importance, giving an ordered list
of those candidates which best match the query pose.

The level sets are rasterized using line or polygon rasterization
in graphics hardware. Each type of relationship function requires a
specific method for calculating the level set. For Rbd, the bound-
ary distance, for example, the polygon boundary is eroded by that
amount that makes the eroded polygon intersect Qp.

7. MIRROR SYMMETRIES

Given a query pose Q, it is often desirable to find all ob-
jects that have similar relationship function values when mirrored
along a symmetry axis of a feature. In other words, we want
R(sFm(P), Fm) to give the same result as R(P,Fm), where sFm

is a function that mirrors pose space along one (or more) symmetry
axes of a feature.

x-mirrored

y-mirrored xy-mirrored

Fig. 7. Mirrored level sets of an object with two mirror symmetries. When
mirroring an object on one of the axes, the resulting object is mirrored.
Level sets that correspond to these mirrored poses are shown as blue lines.
Non-mirrored level sets are shown in red. The blue/red dashed lines are two
level sets with the same position (but different angle), one mirrored and one
non-mirrored.

However, if a pose has been mirrored, it does not represent the
same object anymore. Instead, it should represent an object that
has been mirrored about Pd. In order to be able to represent such
mirrored poses, we extend pose space P to P′ by a binary flag Pm:

P ′ = (Pp, Pd, Pm) ∈ P′.

To account for mirrored poses, the symmetry operator is ex-
tended to handle the mirror flag:

sFm((Pp, Pd, Pm)) = (Pmp , P
m
d , 1− Pm),

where (Pmp , P
m
d) is the pose mirrored about a symmetry axis s of

Fm. This properly accounts for the fact that after application of two
symmetry axes, the pose is in unmirrored space again.

We then construct additional level sets, one for each symmetry
axis or combination of symmetry axes s of the matched features
(see Figure 7):

Ls(R,Fl, Fm) = {P ′ ∈ P′|R(sFm(P ′), Fm) = R(Q,Fl)}.

The remainder of the method is identical: the mirrored and non-
mirrored level sets are accumulated in extended pose space P′, and
the maxima identify points that have relationship function values
similar to the query point, up to symmetries. This is implemented
by accumulating importance in two different grids, one for mirrored
and one for regular space.

8. LOCAL COORDINATE SYSTEMS

So far, the algorithm works well for placing rigid objects, where
considering the pose of the object is sufficient. However, it is diffi-
cult to generate a continuous mapping from source to target poly-
gon directly from our method. For example, the map resulting from
always taking the highest target maximum for every source pose
is generally neither injective nor surjective. In floor plans, it can
also be useful to transfer an object non-rigidly, i.e., transferring all
points from a sample placement to another location in the scene,
while preserving both the coherence of the points among them-
selves and the match of each point to its neighborhood. This re-
quires a more strict definition of neighborhoods in the form of local
coordinate systems. In this section, we want to clarify the connec-
tion between our relationship functions and local coordinate sys-
tems by providing a simple approach for constructing local coordi-
nate systems using our relationship functions. For a more sophis-
ticated approach to establishing a mapping between shapes using
local coordinate systems, we refer to the work of Solomon et al.
[Solomon et al. 2012].

In a coordinate system, each coordinate can be interpreted as a
relationship between the point being described and some geomet-
ric feature. Together, the coordinates uniquely specify the point in
space. In Euclidean coordinates, for example, each coordinate mea-
sures the distance of the point to a plane orthogonal to the coordi-
nate axis. In mean value coordinates, each coordinate is related to
a generalized distance of the point to a polygon vertex.

The directional relationships introduced in Section 4 can also be
used to identify points in space with respect to a feature (i.e., lo-
cally). In 2D, exactly two such relationships are required. In order
to form a local coordinate system, the selected relationships should
provide a bijective mapping from the domain to coordinates. While
it is evident that each of the directional relationship functions cover
the domain, the uniqueness of coordinates can be described in terms

ACM Transactions on Graphics, Vol. VV, No. N, Article XXX, Publication date: Month YYYY.

Edit Propagation using Geometric Relationship Functions • 7

Fig. 8. Two objects propagated from the inside of the top room to the in-
side of the bottom room using a local coordinate system based on the bound-
ary distance Rbd and a custom relationship Rbf based on the arc length
from a fixed start point on the boundary to the position on the boundary
closest to the query pose. Red lines are the iso-curves for different values of
Rbd and green lines iso-curves for different values of Rbf .

of the level sets of the relationship functions, which, in the posi-
tional domain, correspond to iso-curves:

The mapping of points to coordinates is invertible if any two
level sets (L1, L2) chosen from the relationship functions (R1, R2)
intersect in exactly one point, and if R1, R2 themselves are injec-
tive (i.e., the corresponding iso-curves do not self-intersect).

The local coordinates of a point Pp with respect to a feature F
are then simply (R1(Pp, F), R2(Pp, F)) (see Figure 8 for an ex-
ample). From the relationships introduced in this paper, only the
pair (Rcd, Rcr) fulfills this property. The drawback of using local
coordinate systems is that the two relations R1 and R2 and the fea-
ture F have to be determined manually before the propagation, and
that only coordinates that fulfill the properties described above can
be employed. Also, the resulting coordinate system does not nec-
essarily provide a smooth mapping between polygons, there may
be some C1 discontinuities. For example, in Figure 11, a pattern of
flowers has been propagated from one lawn area to other lawn areas
using local coordinates (for details refer to Section 10).

9. APPLICATION: FLOOR-PLAN EDITING

For specific applications, we can extend our method in various
ways. An interesting area of application is floor-plan editing. Man-
ually placing objects in these floor plans can be time-consuming
but cannot be trivially automated, since the placed objects have to
respect geometric relationships to existing objects. To apply our
method to this problem, objects of the floor plan, such as rooms or
tables, are modeled as polygons. To place an object, the user defines
a pose. We can propagate this pose using geometric relationship
functions as described in the previous sections. To specialize our
method to this application, we introduce four simple extensions:
polygon labels, a hierarchy over polygons that describes inclusion
relations, a pose validation step that removes propagated poses that
would result in unwanted object intersections, and placing arrays of
objects. Additionally, we define probabilistic extensions for object
placement.

Labels. Since the focus of our work does not lie on object
recognition, we assume all polygons in the floor plan are labeled
according to their type, e.g., table, bathroom, and so on. All features
F of a polygon have the same label as the polygon. The matching
accuracy Im(F1, F2) of two features with different labels is set to
zero, reflecting the fact that objects of different types should not be
matched.

palace grounds

left parcel

left flower bed

decoration1

right parcel

right flower bed

decoration2

...

...

...

Fig. 9. The floor plan hierarchy for a small garden scene. When placing
an object in the left flower bed (red arrow), only the siblings and the parent
(purple) of the object are considered for Il.

Hierarchy. A floor plan is usually divided into different areas
like rooms or buildings. These areas are objects of the floor plan and
correspond to polygons in our framework. When placing an object
into one of these areas, only relationships to objects in the same
area are important. To incorporate this fact into our framework in
a general way, we define a hierarchy on all polygons. A polygon
Ac is the child of a polygon Ap if Ac is contained in Ap, or if the
polygons intersect and Ac has smaller area. The local importance
Il(Q,F) of a feature is set to zero ifQ is not contained in the parent
polygon of AF . This allows, for example, first placing parcels in a
larger area, then flower beds in each parcel, and then flowers in a
flower bed. In each step, only the parent and siblings of an object
will be considered for Il (see Figure 9).

Pose validation. The placement algorithm does not take geo-
metric properties of the object (apart from its pose) into account.
Therefore, a placed object could have unwanted intersections with
existing geometry. To avoid this, we first collect all labels of poly-
gons that are intersected by the object when placed at the query
poseQ and at the candidate pose P . If the labels at P are not a sub-
set of the labels at Q, then the pose is removed. Typically, this al-
lows intersections with the parent polygons at the placed poses. For
the intersection step, alternative geometry can be used. For doors,
for example, the polygon can be extended to avoid objects being
unintentionally placed too close.

Arrays of objects. We can also facilitate the placement of ar-
rays of objects. An array is a set of copies of the same object that
are aligned along a path and have fixed spacing. The path is defined
as the offset boundary of a nearby polygon. Arrays can be defined
by a start point, an end point, a polygon, and a spacing. The spac-
ing is user-defined and set before the array is created. First, the start
point is propagated as usual and all resulting propagated points are
marked as starting points. Then, a second point is propagated to
mark the end points of the array. The polygon used to align the ar-
ray is defined as the polygon closest to both start- and end points.
If the array start and end do not agree on the closest polygon, no
array is created. If there are more than two end points on the same
boundary, only the end point closest to the start point is used to
form the array. For all valid pairs of start and end point, the end
point is projected to the offset boundary of the polygon to mark the
end of the array along the offset boundary, and objects are placed
using the predefined spacing.

Probabilistic pose selection. In order to allow more varia-
tion, we introduce probabilistic placement of poses. First, we de-
fine a scope for probabilistic selection, typically by parent polygon
label (e.g., “room”). Several query poses are defined in the source
scope. Then, in each target scope, one of the query poses is ran-

ACM Transactions on Graphics, Vol. VV, No. N, Article XXX, Publication date: Month YYYY.

8 • P. Guerrero et al.

domly selected, and only matches corresponding to that query pose
are accepted as candidates.

Probabilistic pose placement. In Section 6.3, we already in-
troduced a kernel kX to avoid aliasing and geometry errors when
rasterizing the level sets. This idea can be extended by choosing a
wider kernel and replacing the deterministic search for local max-
ima by a probabilistic one, to allow for more natural (i.e., irregular)
placements. This can be done by interpreting the resulting regular
grid as a probability distribution and sampling poses according to
this distribution.

Parameters. In floor-plan editing, we allow for two types of
parameters: first, the maximum number of matches allowed for a
polygon of a certain label (typically “room”) per query pose, and
second, a maximum placement density, which can be influenced by
changing the radius of the non-maximum suppression.

We use the first three extensions (labels, hierarchy and pose val-
idation) in every operation of our examples. See Section 10.1 for a
discussion on the influence of labels on the final result. On the other
hand, arrays of objects, probabilistic pose selection and probabilis-
tic pose placement are optional operations that are not necessary
for every scene, but give results that would be hard to achieve with
the standard propagation operation or further facilitate object place-
ment. All of the operations are used at some point in the examples.
See the additional material for details.

10. RESULTS

We have implemented a simple prototype of our method in MAT-
LAB. The prototype has a user interface that supports the opera-
tions and settings described in Section 9. A typical modeling ses-
sion starts with a floor plan containing only few objects, usually
only the rooms. Note that it is necessary to have at least one ob-
ject in the scene before an edit propagation is meaningful. A user
of the interface can then place (position, scale and rotate) objects
from a library of labeled objects and apply edit propagation. With a
slider, the user can interactively set a threshold on the importance of
placements that are displayed. The user can then selection arbitrary
objects and integrate them into the scene. Subsequent edit propaga-
tions take relationships to previously placed objects into account.

The computational complexity of an edit operation depends on
the number of features in the source room NS

i and the total num-
ber of features NF

i having the same label i. Each feature in the
source room (or more generally parent object of the source pose)
has to be matched with all the features having the same label
in all target rooms, resulting in a computational complexity of
O(
∑
i∈LN

S
i N

F
i), where L is the set of labels in the scene. In prac-

tice, NS
i does not depend on the complexity of the scene, since for

example larger floor plans usually have more rooms, but not more
objects inside a room. NS

i is also typically very small compared to
NF
i , so the complexity is approximately linear in the total number

of features of a scene. In our implementation, one edit propagation
typically takes between 1 and 6 seconds, up to approximately 15
seconds in the fully populated crown scene (Figure 12). This scene
is close to worst-case for our method, since all features are placed
in only two ‘rooms’ (i.e., the two crowns), resulting in a large NS

i .
Please note that our algorithm is an unoptimized proof-of-concept,
and the timings can be improved.

We demonstrate our method by populating two extensive scenes
with a large number of objects. The goal is to create plausible object
positions with few edit operations. We only show the result and
the starting configuration for each of the two scenes. Unless noted

otherwise, all relationship functions described in Section 4.2 were
used for each edit operation. For the results of each individual step,
please refer to the additional material.

The first scene is one floor of an apartment building, as shown
in Figure 10. The starting configuration for this example is a
bare room layout. Rooms are labeled as bedrooms, living rooms,
kitchens, closets, toilet rooms, and bathrooms. For illustration, dif-
ferent apartments are shown in different colors, although this has
no effect on the algorithm. Several pieces of furniture are propa-
gated successively, as shown by the red numbers. The manually
placed query object for each operation is encircled. Note that even
though the rooms have different shapes and sizes, and furniture in-
side the rooms has different arrangements, our method ensures that
object positions are always plausible and similar to the position of
the query object. In this example, a total of 160 objects were placed
with 26 edit operations.

The second scene is a palace garden, shown in Figure 11. Here,
the domain is divided into several parcels, and the starting config-
uration only includes the boundaries of these parcels. Parcels are
labeled as way, garden, and palace. These parcels only serve as
a guide for the placement of the actual objects and are deleted at
the end of the editing session. Placed objects include flower beds,
flower decorations inside the flower beds, fountains, trees, statues
and pagodas. In this scene, we use several different operations to
propagate objects. In addition to the usual edit propagation, we
use object array operations to place the objects that are aligned in
straight lines or circles, such as the bushes around the fountains.
In step 19, we use local coordinate systems defined with respect
to the selected flower beds to propagate all flower decorations of
the source flower bed in one operation. The local coordinate sys-
tem is composed of the boundary distance relationship Rbd and a
custom relationship Rbf based on the arc length from a fixed start
point on the boundary to the position on the boundary closest to the
query pose. To propagate the large trees, we applied the probabilis-
tic pose placement described in Section 9. A total of 617 objects
were placed with 27 edit operations.

Our method is not limited to architectural applications, but it can
handle other types of polygonal scenes as well. In Figure 12, we
demonstrate placing gems and ornaments on two crowns. Since we
only handle two-dimensional domains, the crowns are unrolled us-
ing a cylindrical mapping before performing the edit operations
(Figure 12, top row). The starting configuration is the outline of
the two crowns shown in black. Objects labeled as ruby, emerald,
pearl, diamond and ornament are propagated on the crowns. Note
that each edit operation is propagated to both crowns. In each op-
eration of this example, we use the centroid direction relationship
function in addition to the other relationship functions, which is the
angle between the direction from pose to object centroid and the
principal direction of the object. As mentioned earlier, our method
can handle arbitrary relationship functions. In step 10, we use an
object array operation to place both lines of pearls. A total of 122
objects were placed in 10 edit operations. Finally, we map the result
back to the 3D crowns (Figure 12, bottom).

10.1 Discussion and Limitations

In the following we discuss several aspects of our method. We will
clarify the influence of the individual terms on the final result, ex-
amine approximations used in our approach, provide comparison
to shape matching with a local descriptor and discuss several limi-
tations of our method.

ACM Transactions on Graphics, Vol. VV, No. N, Article XXX, Publication date: Month YYYY.

Edit Propagation using Geometric Relationship Functions • 9

1

2

3

4

5

6

7

8

9

10

11 12

13

14

15

16

17

18

19

20

21

22

23

24

25

Fig. 10. In the apartment-building scene, 160 objects were placed with 26 edit operations. The leftmost image shows the starting configuration, the middle
image shows the individual edit operations – the numbers indicate the order of the operations – and the right image shows the final result. Zoom in to see
details or refer to the additional material for a full-sized version and individual steps.

1

2
3

4

567

8

9 9
1011

12

13

14 14

14

14

15

16

17
18

19 20

21

22

25
26

27

24

23

Fig. 11. In the palace-garden scene, 617 objects were placed with 27 edit operations. The leftmost image shows the starting configuration, the middle image
shows the individual edit operations – the numbers indicate the order of the operations – and the right image shows the final result. The red lines in the left
and center image are polygons that guide the initial object placement and are removed in the end. Zoom in to see details or refer to the additional material for
a full-sized version and individual steps.

Influence of Local Importance and Matching Accuracy.
We use two terms to determine the relevance of a level set: the local
importance Il and the matching accuracy Im. Both are needed to
filter out level sets of low relevance. We show the effect of setting
either term to a constant in Figure 13. For clarity, we only use the

boundary distance and segment arclength relationship functions in
this example. When setting Il to a constant (Figure 13 a and c),
all features in the source room have the same importance, e.g., the
segment on the far side of the room has the same importance as the
segments next to the bed. The level sets from these less important

ACM Transactions on Graphics, Vol. VV, No. N, Article XXX, Publication date: Month YYYY.

10 • P. Guerrero et al.

1 2

4

5 6
7 8 9

10

3

Fig. 12. Placing gems and ornaments on two crowns. In this example, we place all gems and ornaments for both crowns in ten edit operations. Each edit
operation is propagated to both crowns. The crowns are unrolled using a cylindrical mapping before performing the edit operations (top row). Source objects
are shown in green, propagated objects in blue. The bottom row shows the final result mapped back to the crowns.

(a) no importance,
no matching accuracy

(d) importance and
matching accuracy

(b) importance only (c) matching accuracy onlysource room

Fig. 13. Influence of the local importance Il and the matching accuracy Im on object placement in a simple scene. By setting Il to a constant (a and c), all
features in the source room are weighted equally, independent of distance to the source pose. When Im is a constant (a and b), all features of the target room
have the same matching quality. Low quality poses in the target rooms are only filtered out when using both terms (d).

features create maxima of low quality, such as the beds facing the
wrong direction in Figure 13 c. By setting Im to a constant, all fea-
tures have the same matching quality, e.g., a match between a long
and a short segment has the same score as a match between two
short segments. The results are additional maxima along the badly
matched segments. Undesirable poses are only filtered out when
using both terms (Figure 13).

Influence of Relationship Functions. Another interesting as-
pect to discuss is the the contribution of each relationship function
to the final placement of an object. Each contribution varies from
operation to operation and between output poses of the same oper-

ation. The relative contributions depend on the types of level sets
that contribute to each maximum in pose space. Figure 14 shows
the contribution of each relationship function in a typical sequence
of operations. Level sets are shown in red. The composition of each
maximum belonging to either the green source objects or the blue
output objects is shown in the histograms next to the rooms. For
example, the placement of the bath tub in the first operation de-
pends mainly on boundary distance, segment arc length and seg-
ment distance. In many cases, not all relationships present in the
source pose (green) are also present the output poses (blue). For in-
stance, the bathtub in the lower-right room does not have the same
segment arc length as the bathtub in the source room. Although not

ACM Transactions on Graphics, Vol. VV, No. N, Article XXX, Publication date: Month YYYY.

Edit Propagation using Geometric Relationship Functions • 11
co

rn
er

 d
ist

an
ce

co
rn

er
 ra

tio
se

gm
en

t a
rc

 le
ng

th
se

gm
en

t d
ist

an
ce

ce
nt

ro
id

 d
ire

ct
io

n

bo
un

da
ry

 d
ist

an
ce

Fig. 14. Influence of the individual relationship functions on object placement. The histogram bars show the relative influence of each relationship function
on the propagated poses, as well as the importance of each relationship type for the source pose in the green room. Relationship level sets are shown as red lines
in the background. Note that in general not all relationships are used to propagate a pose, but all relationships are used at some point in the whole sequence of
operations.

all relationship types are used in every edit operation, none of them
is superfluous. Each relationship type is used at some point in the
whole sequence of operations. Note that as in the crowns scene, in
this example we also use the ‘centroid direction’ relationship type.

Order Dependency. When propagating multiple objects, the
final result usually depends on the order of operations. Objects are
propagated one at a time, and each propagation takes all objects
that have already been placed into account. Figure 15 shows the
result of propagating five objects using exactly the same operations,
but in two different orders. Note how the shelf placed in the first
operation of sequence e,a,c,b,d is propagated to a different pose in
the lower right room than in the sequence a,b,c,d,e (last operation),
since there are less relationships that constrain its placement. Both
sequences result in different but plausible object placement. The
differences in the final result are encircled in red. Often there is a
natural dependency between objects that suggests a certain order of
operations. For example, the placement of the bathmat depends on
the placement of the bathtub and should therefore be placed after
the bathtub. If there are no such constraints, it is generally advisable
to place larger objects first, when there is still enough free space for
them. In future work, we may consider transferring all objects in
a room at once and automatically resolving all mutual constraints
between the objects. However, in many cases incremental furniture
placement might still be preferable, since the amount of work is the
same and the user has more feedback as well as more control over
the final result.

Influence of Labels. In our floor-plan editing application, we
rely on labels to provide additional information about objects in a
scene. In actual floor plans, relationships often depend on the se-
mantics of objects in addition to their geometric relationship. For
example, a night table is usually found next to a bed and not in
the living room. Since the focus of our method does not lie on ob-
ject recognition, we use labels to capture the semantics of objects.
Figure 16 compares the results of propagating a night table in a
typical floor plan without labels (left) and with labels (right). Note
that without labels, there are additional maxima in the living room
because our method has no way of distinguishing between beds, ta-
bles and chairs or between living rooms and bed rooms. However,
the method does not break down completely. Even though the re-
sults are unintuitive for a floor plan, geometric relationships (e.g.,

close to the inner boundary of a polygon, close to other polygons
from the outside, approximately at the center of a polygon segment)
are met by all propagated night tables.

Approximation of 3D Accumulation. When accumulating
level sets, we approximate the full 3D pose-space accumulation
(position and direction) with a more efficient accumulation in 2D
position space and take the direction with maximum weight at each
position, as detailed in Section 6.2. For most cases, this results in
the same output poses as in the full 3D pose-space accumulation,
but there are some cases where the results are different. Figure 17
shows the same sequence of operations performed on the same
scene with standard accumulation in 2D position space (left) and
accumulation in full 3D pose space (right). All objects in the green
source rooms are propagated to the remaining rooms in six edit op-
erations. As in the crowns scene, in this example we also use the
‘centroid direction’ relationship function. Note that most objects
are propagated to the same poses (the small differences in direc-
tion are due to the discretization of the direction in the full 3D pose
space). Two differences are introduced during the propagation of
the two blue objects.

The first difference is the placement of the TV. In the source
room, the TV is parallel to the wall and facing the bed. These two
directional relationships cannot be satisfied in the far right room
– the TV must either be parallel to the wall or facing the bed. In
this room, there are two level sets with direction parallel to the wall
(corner distance and boundary distance from wall) and two level
sets with direction facing the bed (boundary distance and centroid
direction from bed), meeting at one position. In the 2D case, all
four level sets form one maximum and the direction with maxi-
mum weight is taken (facing the bed). In the 3D case, there are two
maxima, shown as two versions of the same room in Figure 17.
One maximum has a direction facing the bed, the other one is par-
allel to the wall. The four level sets do not actually meet in full 3D
pose space, only the level sets shown in each of the two versions of
the room meet. When using the full 3D pose space in practice, we
would have to resolve such overlapping objects by either letting the
user pick one of the objects or by automatically taking the object
with maximum importance.

The second difference is the lavatory placement in the lower toi-
let room. Similar to the TV placement described above, two level
sets with different direction (boundary distance to door and bound-

ACM Transactions on Graphics, Vol. VV, No. N, Article XXX, Publication date: Month YYYY.

12 • P. Guerrero et al.

a

b

c

d

e

se
qu

en
ce

a,
b,

c,
d,

e
se

qu
en

ce
e,

a,
c,

b,
d

Fig. 15. Dependency on the order of operations. When propagating the five objects bathtub (a), toilet (b), bidet (c), bathmat (d) and shelf (e) from the green
source room to three target rooms, the final result depends on the order of operations. The top row shows each step of operation sequence a,b,c,d,e, the bottom
row each step of sequence e,a,c,b,d. Note how the object placement depends on the order of operations. Different placements are encircled in the right image.

without labels with labels

Fig. 16. Effect of labels on object placement. We propagate the single night table encircled in red. Note that without labels, there are additional maxima at
positions that have relationship values similar to the source pose, but to object types that are not present in the source room. The accumulated level sets are
shown in the background.

ary distance to wall) are accumulated in the 2D case, whereas in the
3D case, the two level sets do not meet. Unlike the TV propagation,
there is no maximum at the same position (no level sets that meet
at this position) and a different maximum is picked instead. As a
result of the different lavatory placement, the toilet is paced at a
different position as well. Note that in most cases, the result of 2D
position space and full 3D pose-space accumulation are the same
and none of the differences result in unintuitive object placement.
However, the speed gain and memory saving from accumulating in
2D position space are significant. Using 2D position space is more
than one order of magnitude faster (1.4-4.3 seconds per operation
in 2D position space versus 39-85 seconds per operation in full 3D
pose space) and needs almost two orders of magnitude less mem-
ory (9.1 MB for discretizing 2D position space versus 762.9 MB
for discretizing the full 3D pose space – in this example, directions
are discretized into 100 bins).

Comparison to Shape Contexts. Local shape descriptors like
the popular shape contexts [Belongie et al. 2002] can be used to
establish a mapping between two polygons. In Figure 18, we com-
pare our method to two methods based on shape contexts. A single
object is propagated from the source room to three target rooms
(rows 1-3) and from a room containing multiple objects to a target
room containing a different arrangement of objects (row 4).

The first method (SC B-Spline), based on code by Dirk-Jan
Kroon [Kroon 2011], establishes a one-to-one mapping between
the source room and each target room. Shape contexts are computed
at regularly sampled positions on the boundary of source and target
rooms, and matching pairs of shape contexts provide constraints for
a B-Spline deformation grid. The grid is refined iteratively to be as
smooth as possible and to avoid fold-overs. In the case of multiple
objects, shape contexts are placed on the boundaries of all objects.
Affine transformations of the source objects (first column) are han-
dled well by shape contexts, but stretching occurs for rooms that
are not related by an affine transform (second column), resulting

ACM Transactions on Graphics, Vol. VV, No. N, Article XXX, Publication date: Month YYYY.

Edit Propagation using Geometric Relationship Functions • 13

maximum 2maximum 1

2D pose space (1.4 - 4.3 seconds) full 3D pose space (39-85 seconds)

Fig. 17. Level set accumulation in the 2D space of positions as described in Section 6.2 (left) and in full 3D pose space (right). We propagated all objects in
the rooms marked in green (bedroom, toilet and closet) in six edit operations to the remaining rooms. Note that the result is mostly identical except for small
differences introduced by the propagation of the two objects shown in green (TV and lavatory). Relevant level sets of the two operations are shown as red lines
in the background. For the TV propagation in full 3D pose space, there are two equivalent output poses at the same position, shown as two versions of the
same room on the right.

in bad object placement. Since the mapping from source to target
room has to be kept diffeomorphic, the mapping cannot accom-
modate all matches between multiple objects in source and target
rooms (last row) if they do not have the same spatial arrangement.

The second method (SC Inner) is a straightforward application
of shape contexts to the area of the polygon (as opposed to the
boundary only). We construct a three-dimensional regular grid over
all poses (position and direction) inside the source room. A shape
context is computed at each grid point and compared to the shape
context at the source pose. The quality of the best match at each
position is shown in the background of each target room. The bed
is placed at the pose with highest matching quality. Since shape
contexts cannot match geometry related by a non-affine transform,
no clear maxima can be found in the second, third and fourth row
of Figure 18 for the ‘SC Inner’ method. Our method, on the other
hand, is neither constrained by a one-to-one mapping, nor does it
require the source and target geometry to be related by an affine
transform. It can find clear maxima and good positions in all of the
rooms.

Fig. 19. Our method cannot handle cases where the desired local impor-
tance Il does not depend on proximity. The red level sets show that the
propagation uses the geometric relationships to the chairs instead of the
desk to do the propagation. This produces an unintuitive result.

Distance-Based Local Importance. Currently, the local im-
portance Il of relationships is determined by a predefined equation
based on distance to the source pose. In some situations, however,

it might be preferable to base the importance on other criteria. Con-
sider the example in Figure 19. Here, the chair marked by the arrow
is propagated from the left to the right room. The only relevant re-
lationship for the chair is to the writing desk. The relationships to
the chairs around the other table are irrelevant. However, as is il-
lustrated with red level sets, the relationship to the two chairs is
stronger and produces a higher maximum, resulting in an unintu-
itive placement for the chair. Similarly, scenes might be constructed
where distant features are more important than nearby features.
These situations can currently not be handled by our method, but
we want to explore strategies for learning Il from user interaction
in future work.

Increasing Scene Difficulty. Since our approach focuses more
on the relationships of a pose to features than on the features them-
selves, our method favors scenes where the quality of a propagated
pose is defined mainly by relationships rather than by the matching
quality. We determine the similarity of two features only coarsely,
using high-level information such as polygon area or segment arc
length (see Section 5.2). For this reason, scenes with many simple
features are best suited for our method (see Figure 20). Decreasing
the number of relevant features while increasing their complexity
reduces the effectiveness of our approach, and would make it nec-
essary to incorporate more selective feature-matching algorithms.
Although we could use more sophisticated feature-matching meth-
ods to compute the matching accuracy Im, e.g. methods that take
the local neighbourhood of a feature into account, this is not the
focus of our method and we opted to keep the computation of Im
simple.

Noise. Similar to overly complex local structures, noise in the
input shape influences the usefulness of our method. In our current
implementation we make no attempt to remove it. Consequently,
adding noise to the boundary of shapes effectively increases their
complexity and introduces many false features like additional cor-
ners and edges (see Figure 21). As explained in the last example,
increasing the complexity of features decreases the efficiency of
our method. Small amounts of noise can be handled (Figure 21,
center), but at higher noise levels false features become more pro-
nounced and clutter pose space, thereby obstructing good maxima

ACM Transactions on Graphics, Vol. VV, No. N, Article XXX, Publication date: Month YYYY.

14 • P. Guerrero et al.

source room SC B-Spline (31-47 seconds) SC Inner (148-454 seconds) RF (0.8-1.15 seconds)

af
fin

e
lo

ca
lly

 a
ffi

ne
m

ul
tip

le
 o

bj
ec

ts
no

n-
af

fin
e

Fig. 18. Comparison to Shape Contexts. We propagate a single object from the source room to three target rooms using Shape Contexts with a B-Spline
deformation grid (SC B-Spline), Shape Contexts computed at grid points inside the polygons (SC Inner) and our Relationship Functions (RF). The first room
(top row) is an affine transformation of the source room, the second room (second row) is locally affine to the source room, while the third room (third row) is
neither. The last row shows the result of propagating a night table from a source room containing multiple objects. The SC B-Spline column is a one-to-one
matching, so we show the deformed coordinates of the source room color coded in red and green. In the other columns we show the accumulated level sets
as heat map. Note that in the affine row, all methods give good results. As the transformation from source to target shapes becomes less affine, the maxima of
the Shape Context become less pronounced. Our method finds good poses and clear maxima in all four cases, since it does not rely on partial shape matching
where the matches have to be related by an affine transform.

(Figure 21, right). In future work we plan to remove the noise in a
pre-processing step, e.g. by adapting an L1 reconstruction method
[Avron et al. 2010] or using bilateral mesh denoising [Fleishman
et al. 2003] to preserve sharp features.

11. CONCLUSION

In this paper, we have introduced the notion of geometric relation-
ships for edit propagation in polygonal scenes. We have exploited
the fact that for propagating object placement, mostly the object
pose with respect to neighboring objects is relevant. Geometric re-
lationships are more flexible and general than local coordinate sys-
tems, and we have shown that a local coordinate system can be con-
structed from certain relationships as a special case. The method
is suitable for propagating object placements in general polygonal
environments, and we have shown an application to floor-plan edit-

ing, where it is especially useful when populating large layouts.
The advantage over knowledge-based algorithms is that no seman-
tic knowledge on the environment is necessary, and since place-
ments are specified by example, they can easily adapt to many dif-
ferent styles of floor plans.

There are several avenues of future work. It would be interest-
ing to investigate relationships that relate to more than one fea-
ture, for example to encode relationships like “between feature A
and feature B”. Furthermore, relationships could be extended to in-
corporate more information about the source object than its pose.
This could be realized by additional relationships between points of
the source object. Thus, “extended” source objects could be propa-
gated, for example, a longer carpet that could adapt to the shape of
the target room. Another interesting direction would be to transfer
all objects in a source room at once and automatically handle mu-

ACM Transactions on Graphics, Vol. VV, No. N, Article XXX, Publication date: Month YYYY.

Edit Propagation using Geometric Relationship Functions • 15

many relvant features,
low feature complexity

few relvant features,
medium feature complexity

very few relvant features,
high feature complexity

Fig. 20. Suitable types of geometry. We show three scenes with geometry that is increasingly difficult to handle for our approach. The left-most scene is well
suited for our method, in the middle scene we can still find good poses, while the right-most scene is not suitable. Since our method is based on relationships
to features, not on feature matching, decreasing the amount of relevant features while increasing their complexity reduces the effectiveness of our approach.

Fig. 21. We show three shapes with increasing noise from left to right.
A single object encircled in red is propagated from the left shape to the
two shapes on the right. Since we make no attempt to de-noise the shapes,
noise can introduce false features like additional corners and segments that
clutter pose space and reduce propagation quality (middle shape) or even
completely hinder propagation (right shape).

tual constraints. Finally, the weights Im and Il could be made more
adaptable by extending them with a weight learned from previous
edits or explicit user interactions.

ACKNOWLEDGMENTS
We would like to thank Jyh-Ming Lien and Evan Behar for mak-
ing the source code of their method to compute Minkowski Sums
available to us and Dirk Jan-Kroon for releasing his code for shape
context matching on the Matlab File Exchange.

REFERENCES

AVRON, H., SHARF, A., GREIF, C., AND COHEN-OR, D. 2010. L1-sparse
reconstruction of sharp point set surfaces. ACM Trans. Graph. 29, 5
(Nov.), 135:1–135:12.

BEHAR, E. AND LIEN, J.-M. 2011. Fast and robust 2d minkowski sum
using reduced convolution. In Proc. IEEE Int. Conf. Intel. Rob. Syst.
(IROS). San Francisco, CA.

BELONGIE, S., MALIK, J., AND PUZICHA, J. 2002. Shape matching and
object recognition using shape contexts. Pattern Analysis and Machine
Intelligence, IEEE Transactions on 24, 4, 509–522.

BOKELOH, M., WAND, M., KOLTUN, V., AND SEIDEL, H.-P. 2011.
Pattern-aware shape deformation using sliding dockers. In Proceedings
of the 2011 SIGGRAPH Asia Conference. SA ’11. ACM, New York, NY,
USA, 123:1–123:10.

BOKELOH, M., WAND, M., SEIDEL, H.-P., AND KOLTUN, V. 2012.
An algebraic model for parameterized shape editing. ACM Trans.
Graph. 31, 4 (July), 78:1–78:10.

FISHER, M., RITCHIE, D., SAVVA, M., FUNKHOUSER, T., AND HANRA-
HAN, P. 2012. Example-based synthesis of 3d object arrangements. ACM
Trans. Graph. 31, 6 (Nov.), 135:1–135:11.

FISHER, M., SAVVA, M., AND HANRAHAN, P. 2011. Characterizing
structural relationships in scenes using graph kernels. ACM Trans.
Graph. 30, 4 (July), 34:1–34:12.

FLEISHMAN, S., DRORI, I., AND COHEN-OR, D. 2003. Bilateral mesh
denoising. In ACM SIGGRAPH 2003 Papers. SIGGRAPH ’03. ACM,
New York, NY, USA, 950–953.

GAL, R., SORKINE, O., MITRA, N. J., AND COHEN-OR, D. 2009.
iwires: an analyze-and-edit approach to shape manipulation. ACM Trans.
Graph. 28, 3 (July), 33:1–33:10.

GIL, J. AND WERMAN, M. 1993. Computing 2-d min, median, and max
filters. Pattern Analysis and Machine Intelligence, IEEE Transactions
on 15, 5 (may), 504 –507.

HORMANN, K. AND FLOATER, M. S. 2006. Mean value coordinates for
arbitrary planar polygons. ACM Trans. Graph. 25, 4 (Oct.), 1424–1441.

JOSHI, P., MEYER, M., DEROSE, T., GREEN, B., AND SANOCKI, T.
2007. Harmonic coordinates for character articulation. ACM Trans.
Graph. 26, 3 (July).

KROON, D. 2011. Shape context based corresponding point models. Mat-
lab File Exchange.

LIPMAN, Y., LEVIN, D., AND COHEN-OR, D. 2008. Green coordinates.
ACM Trans. Graph. 27, 3 (Aug.), 78:1–78:10.

MERRELL, P., SCHKUFZA, E., LI, Z., AGRAWALA, M., AND KOLTUN, V.
2011. Interactive furniture layout using interior design guidelines. ACM
Trans. Graph. 30, 4 (July), 87:1–87:10.

SOLOMON, J., NGUYEN, A., BUTSCHER, A., BEN-CHEN, M., AND

GUIBAS, L. 2012. Soft maps between surfaces. Comp. Graph. Fo-
rum 31, 5 (Aug.), 1617–1626.

ACM Transactions on Graphics, Vol. VV, No. N, Article XXX, Publication date: Month YYYY.

16 • P. Guerrero et al.

WEBER, O., PORANNE, R., AND GOTSMAN, C. 2012. Biharmonic coor-
dinates. Computer Graphics Forum 31, 2409 2422.

YEH, Y.-T., YANG, L., WATSON, M., GOODMAN, N. D., AND HANRA-
HAN, P. 2012. Synthesizing open worlds with constraints using locally
annealed reversible jump mcmc. ACM Trans. Graph. 31, 4 (July), 56:1–
56:11.

YU, L.-F., YEUNG, S.-K., TANG, C.-K., TERZOPOULOS, D., CHAN,
T. F., AND OSHER, S. J. 2011. Make it home: automatic optimization of
furniture arrangement. ACM Trans. Graph. 30, 4 (July), 86:1–86:12.

ZHENG, Y., CHEN, X., CHENG, M.-M., ZHOU, K., HU, S.-M., AND MI-
TRA, N. J. 2012. Interactive images: cuboid proxies for smart image
manipulation. ACM Trans. Graph. 31, 4 (July), 99:1–99:11.

ZHENG, Y., FU, H., COHEN-OR, D., AU, O. K.-C., AND TAI, C.-L.
2011. Component-wise controllers for structure-preserving shape ma-
nipulation. Computer Graphics Forum 30, 2, 563–572.

Received September 2008; accepted March 2009

ACM Transactions on Graphics, Vol. VV, No. N, Article XXX, Publication date: Month YYYY.

