Generating Procedural Materials from Text or Image Prompts

Yiwei Hu Paul Guerrero Milos HasSan
Yale University Adobe Research Adobe Research
New Haven, CT, USA London, UK San Jose, CA, USA

Adobe Research
San Jose, CA, USA
yiwei.hu@yale.edu

Holly Rushmeier
Yale University
New Haven, CT, USA
holly.rushmeier@yale.edu

guerrero@adobe.com

__Generated Graphs — “\ (

In, m i
(" Input Images " "
B e dirty concrete

o3

®

. J

J

Image Prompts Text Prompts

mihasan@adobe.com

Valentin Deschaintre
Adobe Research
London, UK
deschain@adobe.com

[Autocompleted\
Autocompleted _Graphg

(" ® Given

Input Images

Unconditional

AutoCompletion

Figure 1: Procedural materials can be represented by directed computational graphs where each node represents a 2D image
generator or filtering operator. The nodes are connected by unidirectional edges defining the computation flow. Our generative
model can produce multiple procedural material graphs 1) from image prompts, 2) from text prompts, 3) unconditionally and
4) conditioned on partial graphs (AutoCompletion). Generated graph structures are shown in green, existing structures (in

AutoCompletion) are in blue.

ABSTRACT

Node graph systems are used ubiquitously for material design in
computer graphics. They allow the use of visual programming to
achieve desired effects without writing code. As high-level design
tools they provide convenience and flexibility, but mastering the
creation of node graphs usually requires professional training. We
propose an algorithm capable of generating multiple node graphs
from different types of prompts, significantly lowering the bar for
users to explore a specific design space. Previous work [Guerrero
et al. 2022] was limited to unconditional generation of random
node graphs, making the generation of an envisioned material chal-
lenging. We propose a multi-modal node graph generation neural
architecture for high-quality procedural material synthesis which
can be conditioned on different inputs (text or image prompts),

SIGGRAPH °23 Conference Proceedings, August 6—10, 2023, Los Angeles, CA, USA

© 2023 Copyright held by the owner/author(s).

This is the author’s version of the work. It is posted here for your personal use. Not for
redistribution. The definitive Version of Record was published in Special Interest Group
on Computer Graphics and Interactive Techniques Conference Conference Proceedings
(SIGGRAPH °23 Conference Proceedings), August 6—10, 2023, Los Angeles, CA, USA,
https://doi.org/10.1145/3588432.3591520.

using a CLIP-based encoder. We also create a substantially aug-
mented material graph dataset, key to improving the generation
quality. Finally, we generate high-quality graph samples using a
regularized sampling process and improve the matching quality by
differentiable optimization for top-ranked samples. We compare
our methods to CLIP-based database search baselines (which are
themselves novel) and achieve superior or similar performance
without requiring massive data storage. We further show that our
model can produce a set of material graphs unconditionally, condi-
tioned on images, text prompts or partial graphs, serving as a tool
for automatic visual programming completion.

CCS CONCEPTS

« Computing methodologies — Rendering,.

KEYWORDS
Node graphs, procedural materials, inverse modeling
ACM Reference Format:

Yiwei Hu, Paul Guerrero, Milo§ Hasan, Holly Rushmeier, and Valentin
Deschaintre. 2023. Generating Procedural Materials from Text or Image

https://doi.org/10.1145/3588432.3591520

SIGGRAPH 23 Conference Proceedings, August 6-10, 2023, Los Angeles, CA, USA

Prompts. In Special Interest Group on Computer Graphics and Interactive
Techniques Conference Conference Proceedings (SIGGRAPH 23 Conference
Proceedings), August 6—10, 2023, Los Angeles, CA, USA. ACM, New York, NY,
USA, 11 pages. https://doi.org/10.1145/3588432.3591520

1 INTRODUCTION

Node graph systems are widely adopted in the computer graphics
industry, allowing artists to design various assets such as material
or shader graphs. This kind of system provides a more user-friendly
visual design interface than shading languages, while still offer-
ing expressive power. In this work we focus on the material node
graphs which are commonly used in material authoring [Adobe
2023]. These graphs describe a set of material maps using a com-
bination of noise and pattern generators and filters. Procedural
materials have attractive properties like tileability, arbitrary resolu-
tion and convenient parametric editability. However, high-quality
node graphs are difficult to author, requiring significant expertise
and time from artists.

In recent years, procedural material fitting has seen significant
progress, with parameter estimation and optimization methods [Hu
et al. 2019, 2022a; Shi et al. 2020] and a segmentation-based graph
fitting framework [Hu et al. 2022c]. These methods however rely
on either a small fixed set of available graphs or a generic graph
structure instantiated by user segmentation. Most recently, Mat-
Former [Guerrero et al. 2022] was proposed, enabling unconditional
graph generation through multiple transformers [Vaswani et al.
2017]. While useful for random material exploration, it can not
be guided by a specific target appearance. In this work, we pro-
pose a novel multi-modal conditional generative model for material
graphs. The model is multi-modal in that it can work with no user
input, a user provided image, a user provided text prompt, or a
partial node graph as input. Our transformer model can produce a
variety of graphs and enable automatic graph completion (Fig. 1).

In particular, we present a CLIP-based [Radford et al. 2021] en-
coder module to enable a multi-modal conditioning on either text
or image prompts. Each of the transformer layers is conditioned by
a CLIP embedding mapped by learnable MLPs. To train our con-
ditional generative model we curate a new material graph dataset
from Substance Source [Adobe 2023]. Given the limited available
data, we augment the data and improve numerous details in the
graph representation. This is particularly important not only for
conditional generation to reproduce a target appearance, but also
improves unconditional generation.

Further, we propose validation and regularization steps at in-
ference time to ensure high-quality error-free graph generation.
To account for the difference between the visual error and the pa-
rameter space error —on which our transformers are trained— and
improve the image-space matching quality, we further improve
the top-ranked generated graphs through differentiable optimiza-
tion [Shi et al. 2020].

To evaluate the performance of our conditional model, we present
two CLIP-search-based baselines. We show our conditional gen-
erative model achieves similar or better performance compared
to retrieval from a large pre-generated database, but without the
massive storage footprint. We present applications of our method
for text-conditioned generation and conditional automatic graph
completion, modes not supported by previous work in modeling.

Hu et al.

In summary we present:

e A multi-modal conditional architecture for material graph
generation.

o A graph dataset augmentation and cleanup strategy.

e A sampling regularization and post-sampling procedure to
minimize the image/text-space distance with the generated

graphs.
2 RELATED WORK

2.1 Program and Graph Generation in Graphics

Node graph systems are visual programming interfaces, making the
generation of a node graph akin to program synthesis. In computer
graphics, Hu et al. [2018] and Ganin et al. [2018] synthesized pro-
grams for interpretable image editing by predicting a sequence of
image processing operations using reinforcement learning. Other
work in program synthesis focused on 2D or 3D procedural shape
generation. For example, Stava et al. [2010] proposed a framework
to automatically generate L-systems while Demir et al. [2016] ex-
tracted a context-free parameterized split grammar for 3D shapes.
Following the development of learning-based approaches, recent
research [Du et al. 2018; Ellis et al. 2019, 2018; Johnson et al. 2017;
Jones et al. 2020; Kania et al. 2020; Lu et al. 2019; Sharma et al. 2018;
Tian et al. 2019; Walke et al. 2020; Wu et al. 2019; Xu et al. 2021]
modeled priors over shape programs which can either be used for
program generation or program induction from input shapes.

We build on the recent work of Guerrero et al. [2022] which
presented a transformer-based unconditional generative model for
material graphs. We improve its unconditional sampling to enable
conditional generation. For multi-modal conditioning, we rely on
the joint image/text embedding of CLIP [Radford et al. 2021] which
has been shown to be effective in text-to-image [Ramesh et al. 2022;
Rombach et al. 2022] and texture synthesis [Song 2022] applications.

2.2 Inverse Procedural Material Modeling

Our method is an inverse procedural material modeling approach
when conditioned on an image. Procedural materials define mate-
rials or texture maps as a set of procedures [Guehl et al. 2020; Liu
et al. 2016], which are typically organized as a node graph for in-
teraction flexibility [Adobe 2023]. Given these existing procedures,
different inverse methods [Guo et al. 2020a; Hu et al. 2019, 2022a;
Shi et al. 2020] aim to recover parameters for a predefined proce-
dural material model given a target image. More recently, Hu et al.
[2022c] go beyond parameter regression, attempting to synthesize
the structure of a node graph instead of relying on a fixed node
graph fetched from a database. The method however still relies on
a generic graph structure, specified by a user segmentation of the
material. Our conditional generative model, on the other hand, can
generate various node graph structures given different types of
user input i.e., text, images or partial graphs.

Further, previous work in inverse modeling has focused on the
production of a single node graph reproducing the details of a given
material exemplar. Our model can generate multiple node graphs,
following the prompt in terms of semantics, structures, and colors,
rather than precisely matching details. The user can then select
from the set of produced node graphs to continue to explore the
material design space.

https://doi.org/10.1145/3588432.3591520

Generating Procedural Materials from Text or Image Prompts

As we synthesize computational graphs, our method also dif-
fers from image-based inversion e.g., StyleGAN inversion [Guo
et al. 2020b; Richardson et al. 2021; Tov et al. 2021]. Indeed, our
results benefit from the advantages of procedural representation
for controlability, tileability and arbitrary resolution.

2.3 Material Acquisition and Generation

We approach a problem similar to material acquisition that recovers
material maps from images. However, material acquisition attempts
to accurately estimate material properties in the form of texel val-
ues of material maps from one or more measurements (generally
photographs). Classical material reconstruction [Guarnera et al.
2016] requires dense measurements, with tens to thousands of cap-
tured images to accurately digitize the material optical properties
of a given target. Recent methods based on deep learning use a
large amount of synthetic material training data to present various
lightweight material acquisition frameworks, reducing the number
of photos required to less than ten, with many requiring a single
input flash photograph [Deschaintre et al. 2018, 2019; Gao et al.
2019; Guo et al. 2021, 2020b; Henzler et al. 2021; Li et al. 2017; Ye
et al. 2021; Zhou et al. 2022; Zhou and Kalantari 2021].

As opposed to these methods, our goal is not to directly produce
an array of texels representing the material. Rather, we generate
programmable procedural node graphs. The generated node graphs
can then generate material parameter maps at any resolution, with
editable sub-components for convenient manipulation and varia-
tion.

3 CONDITIONAL MATERIAL GRAPH
GENERATION

3.1 Overview

We present a generative model for procedural materials that can
be conditioned on a given text prompt or image. Procedural ma-
terials are represented as node graphs, which are directed acyclic
computation graphs (Fig. 1) that can be controlled through a set of
parameters, and output a set of 2D material maps that define a mate-
rial. A node graph consists of nodes that represent image operators,
and edges that define the information flow between operators.

Our goal is to model the conditional distribution p(g|y) of graphs
g given inputs y, which may, for example, be text or image prompts.
To model the probability distribution over node graphs, we follow
MatFormer [Guerrero et al. 2022] and encode the graph as a set of
sequences: a node sequence Sy, an edge sequence S, and a parameter
sequence Sp that are obtained by linearizing the graph. A proba-
bility distribution over each sequence can then be modeled using
three transformer-based models [Vaswani et al. 2017], for nodes,
edges, and parameters. We model correlations between the three
sequences by conditioning edge generation on nodes and parameter
generation on both nodes and edges. Unlike MatFormer, we also
condition the generation of all three sequences on the inputs y, and
make several architectural improvements to the generators.

We describe node graphs in Sec. 3.2 and give a more detailed
description of our conditional generative models in Sec. 3.3. To train
our conditional model, we present a new material graph dataset
in Sec. 3.4, with careful preprocessing and extensive data augmen-
tation, significantly extending the material space captured by our

SIGGRAPH ’23 Conference Proceedings, August 6-10, 2023, Los Angeles, CA, USA

model compared to MatFormer. We describe our training setup in
Sec. 3.5 and discuss our regularized sampling as well as ranking-and-
optimize step for image-space similarity improvement in Sec. 3.6.

3.2 Node Graphs

A material node graph g = (N, E) consists of nodes N = (n1,nz...)
and edges E = (e, ez, ...). Nodes are instances of image operations
from a predefined library. A node n; = (7j, P;) is defined by the
operation type 7; and a set of node parameters P; = (pipé o)
that control the operation. Individual node parameters p;. may have
various types like integers, floats, strings, fixed-length arrays or
variable-length arrays. The operation type also defines a set of
input slots (ini, in;, ...) and a set of output slots (out?, out;, o)
Each input slot can receive one input image, and the set of all input
images is transformed by the image operation into output images
that are provided in the output slots. A node that has zero input
slots is called a generator node. All nodes have at least one output
slot, except special output nodes that define the final outputs of the
graph.

Edges define the information flow in a node graph. They are
unidirectional: an edge e; = (out?, in];l) always connects an output
slot of one node to an input slot of a different node. An output
slot can provide images to multiple input slots of other nodes, but
an input slot can only receive an image from a single output slot.
Additionally, no cycles are allowed in a node graph. In the following,
we denote the output slot that edge e; starts from as e;.’”t and the
input slot that the edge ends in as .

A graph is evaluated by running the operations defined by each
node in a topological order. After evaluation, the output nodes of
the graph provide a set of 2D material maps describing spatially
varying material parameters such as diffuse color, roughness, height,
or normals.

3.3 Conditional Generative Model

Our generative model for node graphs is based on MatFormer,
which we improve to allow for generation conditioned on images or
text prompts. We generate node graphs in three steps, correspond-
ing to nodes, edges, and node parameters. For each step, we train
a conditional transformer that models the probability distribution
over node, edge, or parameter sequences, respectively, conditioned
on the input prompt y. A transformer-based conditional generative
model with parameters &£ models the conditional probability distri-
bution of a sequence S conditioned on y as a product of conditional
probabilities for each token s;:

pe(sly) = [[pesils<iy) M)

where s<; := s1, ..., si—1 denotes a partial token sequence generated
up to token s;. The transformer outputs the probability distribution
pi(sils<i, y) in each step, which can be sampled to obtain the next
token s;. The dependence between the sequences that represent a
graph g is modeled using conditional probabilities:

p(gly) = po(Suly) py(SelSn,y) py(SplSe. Sn. y),)
where 0, ¢, and are parameters of the transformer models for

node sequences S, edge sequences S, and parameter sequences
Sp, respectively. Unlike MatFormer, our generative model accepts

SIGGRAPH 23 Conference Proceedings, August 6-10, 2023, Los Angeles, CA, USA

i il

J

Conditioning

1spoous

XS
samu(}eqmd

/ L nding

_ V) \ Node Generator
m—
Conditioning Input Slot Encoder I Encoder
Sequence Layer l Layer

seumq‘mmd
ndino

18poous

I —

Output Edge Encoder __ | ¥ _ Encoder
;/ Sequence Layer Layer

K Edge Generator (Pointer Network) j
E— B
Condltlonlng __’_’ _’—
Laye

m |

3

8

=3 Per-Node Attention Graph

2 Convolutional
Network

Parameter Generator

|
enos
se!l!l!qlzqmd
Qndmo

Figure 2: The architecture of our conditional generative
model. We show a single next token generation step. The
"Output Node/Edge/Parameter Sequence" blocks are the se-
quences generated so far. As an autoregressive model, the
output sequences serve as inputs for next token prediction.
Given a text or image prompt as conditioning, the encoder
encodes it to the dimension of the hidden states of our trans-
former encoders. For the encoder, we use CLIP embedding
with a learnable MLP. The encoded feature vector is then
fused into each transformer encoder layer. In the parameter
generator, the Graph Convolutional Network captures the
edge connectivity of neighbor nodes and the transformed
node embedding is attached as an auxiliary input sequence
for the transformer to pay attention to the node that it is
generating parameters for.

a condition y that guides the sampling process of the transformer.
The condition y is given as a feature vector. We will describe our
approach to obtain this feature vector from images or text prompts,
and our transformer conditioning strategy in Sec. 3.3.1. In a further
departure from MatFormer, we generate all parameters in a graph as
a single sequence, instead of one sequence per node, and condition
the parameter probabilities py, (Sli, |Se, Sn, y) on the edge sequence
Se in addition to the node sequence S, (Sec. 3.3.3).

3.3.1 Conditioning on Text Prompts or Images. We consider multi-
modal inputs including text prompts and images. Radford et al.
(CLIP) [2021] proposed a jointly learned space for encoding both
text prompts and images. To benefit from this joint encoding, we
use a frozen CLIP model (ViT-L/14) to encode our inputs. As we will
introduce in Sec. 3.4, we train our conditional models using image-
to-graph correspondences. During training, our network is only
conditioned on image space CLIP embeddings which are not exactly
the same as CLIP text space embeddings [Ramesh et al. 2022]. This
limits the quality of the text-conditioned generated material graphs.
We therefore follow the approach of DALL-E2 and apply a prior
(a specialized network) to transform CLIP text embeddings into

Hu et al.

CLIP texture embeddings. This model was trained using 10 mil-
lions of text/texture pairs [Aggarwal et al. 2023], transforming text
embedding into texture image embeddings. When providing a text
prompt, we encode it as a CLIP text embedding and then transform
it to a CLIP texture image embedding, compatible with our training
data. The CLIP embedding is then encoded by a trainable MLP to
map it to the dimension of the hidden states of our transformer
encoders. The mapped embedding is then added to the output of
each transformer encoder layer, after layer normalization. We show
in Fig. 2 the design of our conditional generative model.

Conditioning on CLIP embedding allows our model to accept
both image and text prompts as inputs. Other encoding methods
are possible. We experimented with an alternative image encoding
approach. While CLIP captures the high-level semantic information
in an image, to encode low-level texture statistics we add VGG
features statistics to capture fine-scale texture detail and a 16x16
downsampled thumbnail to summarize the main color of the input
image. Detailed implementation of this encoding is presented in
the supplementary material. We discuss the performance of this
alternative (Ours (VGG)) in Sec. 5. Note that the construction of
this encoding is however slightly more complicated and prevents
the use of text encoding. With the exception of the comparison in
Fig. 7, the image results we show in the paper are generated by our
CLIP-only encoding (Ours).

3.3.2 Node and Edge Generation. Node and edge generation closely
follows the approach proposed by MatFormer, except for the added
conditioning on y.

To generate a node sequence S, = (19,71, ...), we iteratively
sample the node model pg(s}'[s”;, y), where s} denotes element i
of sequence Sy. Each step generates the integer ID 7; of a node.

To generate an edge sequence Se = (9", eli“, eut, ezi“, ...), we
iteratively sample the edge model pg (sf|s%;, Sn). Each step gener-
ates a pointer into the list of all output and input slots in the graph.
Pointers are generated using a transformer with a head based on
Pointer Networks [Vinyals et al. 2015]. The list of all output and
input slots is derived from the node sequence S, generated in the
previous step and includes information about the operation type of
the node each slot is attached to.

As usual for transformers, all sequences are extended with auxil-
iary tokens that mark the start and end of a sequence. Additionally,
all transformer models receive auxiliary input sequences that pro-
vide information such as the index of a token in the sequence. We
use the same auxiliary sequences as MatFormer, please refer to the
supplementary material for details.

3.3.3 Parameter Generation. For parameter generation, we take
a different approach than MatFormer. First, we condition on both
the node and edge sequences S, and S, instead of only on the node
sequence Sy. This allows us to capture the relationship between
parameters and edges in the graph; these were independent in
MatFormer. Second, instead of generating one parameter sequence
per node, we generate all parameters of a graph in a single sequence.

To generate the parameter sequence Sy = (p%,p;, .. .,p%,p%, o)
of a graph, we iteratively sample the model p¢(s§ |s‘i<)j, Sn. Se). Each
step outputs a parameter, or one scalar element of a parameter in
the case of vector- or array-valued parameters. Conditioning on

Generating Procedural Materials from Text or Image Prompts

the node and edge sequences S, and S, is implemented through
a context-aware embedding 7; of each node n;. These node em-
beddings are given as an auxiliary input sequence, where each
parameter token receives the embedding of the node it is being
generated for (i.e., per-node attention in Fig. 2).

The embedding 7; includes information about both the operation
type 7; of the node and the full node sequence Sp. It is computed
with a transformer encoder 7; = g”(Sp, i). We additionally include
edge connectivity information from the sequence S, in the node
embedding. We use a graph convolution network (GCN) to capture
the edge connectivity in the neighborhood of the node: given a
node embedding ?;, we use a GCN h with a residual connection to
capture the local edge connectivity information:

Ti =7+ h(Sn, Se, i) 3)

We use 6 layers in our GCN, allowing us to capture the edge struc-
ture up to 6 edges away from the node n;.

The parameter sequence is extended with auxiliary start and end
tokens, and with special tokens that mark the start of the parameter
sub-sequences for each node. Apart from the auxiliary sequence
of node embeddings 7;, we use the same auxiliary input sequences
as MatFormer, providing information such as the index and type
of the parameter being generated. We also compare our graph-
conditioned parameter generator with an image/text conditioned
extension of the MatFormer parameter generator. We find a small
performance improvement and training speed acceleration (1.5x)
due to higher level of parallelism. See our supplementary material
for a discussion.

3.4 Material Graph Dataset

The success of sequence generative models such as GPT3 [Brown
et al. 2020] relies largely on the size of their training data. How-
ever, the data available for procedural material graphs is limited.
To generate a dataset which can be used to train our conditional
model, we rely on Substance Source [Adobe 2023]. However, the
available material graphs were created by different material artists
over multiple years, with different methodology and skills, making
the data inconsistent. We therefore carefully preprocess the dataset,
and perform a series of data augmentations.

3.4.1 Graph Reformatting and Simplification. Since the raw dataset
contains material graphs created in different system versions, our
first step is to ensure that all material graphs are properly formatted
and have uniform material representation e.g., fixing precision and
dependency problems (See supplementary material for a checklist).

Second, a material graph can generate different material param-
eter maps for different rendering workflows and can be designed
to generate additional material maps such as ambient occlusion
(AO) maps, anisotropic maps etc. Such parameter maps are useful
for artists but make the conditional generative task particularly
difficult, as not all graphs contain these outputs and they tend to
increase the length of the sequence to generate. Hence, we focus on
the standard physically-based-rendering (PBR) workflow, assuming
a GGX microfacet [Walter et al. 2007] shading model, and generate
node graphs that produce albedo, normal, roughness and metallic
maps. We therefore prune the branches of the unused maps from
the graph where they appear, in a back-to-front way. A node is

SIGGRAPH ’23 Conference Proceedings, August 6-10, 2023, Los Angeles, CA, USA

discarded when it is in the computation branch of a unused node,
and not in the computation of a used node. This simplification step
significantly reduces the size of graphs and lets our model focus on
the most important sequences. To avoid the generation of biased
normals sometimes observed in MatFormer, we also prune the Level
nodes (the nodes that adjust the histogram of the input image) in
the normal branch.

3.4.2 Graph Splitting and Filtering. In material graph design sys-
tems, switch nodes are a type of node that activates one of the
multiple alternative computation branches passing this node. The
branch being activated is controlled by a integer parameter speci-
fied by users. This essentially packs multiple functionalities into
a single graph and is extremely difficult for our model to learn. A
graph that contains switch nodes can be split into multiple smaller
graphs by creating a version of the graph for each branch, further
reducing its complexity. If multiple switch nodes are present, a
large number of combinatorial options may exist. We set a sam-
pling upperbound to 5. If the maximum number of branches is kj,
among all the switch nodes, we sample at least max(kp, 5) to ensure
each branch is at least sampled once. Finally, we remove graphs
which are too similar to others, to prevent duplicates (i.e. the aver-
age mean square difference in the material maps they generate is
smaller than 0.01).

Considering the difficulty of predicting overly long sequences,
we cut the graphs belonging to the tail of the length distribution.
We filter node graphs which contain a large number of nodes (>
80) or edges (> 200) or slots (> 210). This graph reduction step
ensures our network focuses on statistically well represented graph
structures. Our filtered dataset includes 4667 (72% of our unfiltered
dataset) valid graph instances, compared against the 2820 unfiltered
instances in MatFormer. This filtering is particularly important
to our conditional model which has to match a specific desired
appearance.

3.4.3 Parameter Augmentation. The parameters of each node are
crucial to control the behavior of a given graph. To increase the
number of variations of materials available during the training of
our generator, we sample 100 sets of parameters for each of the
4667 graphs of our dataset.

However, randomly sampling the full parameter space of a pro-
cedural model will generate incorrect parameter combinations,
producing purely white or black images or material maps which
are not useful to artists [Hu et al. 2022a]. We compute the statistical
distribution on parameters from the Substance Source dataset to
guide our sampling process. Specifically, we sample a parameter p
in a material graph g based on a Gaussian distribution G(pf,, ﬂap).
The mean of this Gaussian is the default value 7 defined in the
graph ¢’s preset and the standard deviation is scaled by a factor f8
from p’s standard derivation among the whole dataset o). Some
parameters’ statistics are not reliable due to limited observations
in the dataset. In such case, we use an uniform distribution based
on a scaled range i.e., U((1 — (x),ujg,, (1+ a)yg) by a scaling factor
of a. The a and f are empirically selected to achieve a balance
between fidelity (i.e., the sampled graphs still look like a material)
and diversity. a/f are set to 0.06/0.2 when sampling float types and
0.06/0.5 for integer types.

SIGGRAPH 23 Conference Proceedings, August 6-10, 2023, Los Angeles, CA, USA

Ground Truth

128 Quantization 32 Quantization

Figure 3: Using 32 bins for parameter quantization results in
significant reconstruction error. A higher number of quanti-
zation bin (128 here) allow to better reconstruct the original
appearance.

3.4.4 Final Dataset. Our final improved dataset contains 466,700
cleaned graphs that are more amenable to generation, paired with
their associated output material maps. We render these material
maps on a planar surface with a point light collocated with the cam-
era, to synthesize an image-graph pair for training and evaluation.
(We could use other lighting configurations like environment map-
ping, since CLIP encoding is fairly insensitive to precise lighting.)
For parameter generation, the probability is modeled over quan-
tized values. We use 128 quantization bins (compared to the 32 used
by MatFormer). While more quantization bins are more challenging
to learn, the result shows significantly better reconstruction quality
as displayed in Fig. 3. This is particularly important for our model
to match the user-provided condition.

3.5 Training

We train our conditional generative model with our new dataset.
We split the dataset into a training set and a validation set before
parameter augmentation, to ensure that the training set and valida-
tion set contain graphs with different topologies, not just different
parameter settings.

All three models (node transformer, edge transfer and parameter
transformer) are trained with the ground truth graphs as supervi-
sion, using a binary cross-entropy loss over the probabilities esti-
mated by the transformer generators. Each transformer is trained
separately using teacher forcing: that is, when generating a new to-
ken in a sequence, the ground-truth sequence is used as previously
generated tokens. As we have a limited number of different graph
structures in the dataset, we ensure we do not over-fit by keeping
the checkpoint with the minimum validation loss.

3.6 Sampling, Ranking and Optimization

3.6.1 Sampling. Since our generative models consist of three trans-
formers operating in succession, errors from previously generated
sequences can propagate and affect the quality of sequences de-
pendent on them. For this reason, we carefully decode the sampled
sequences using semantic validity checks to ensure error-free gen-
eration.

While MatFormer ensures semantic validity as a post-processing
step, once the entire sequence has been generated, we perform the
validity checks during sampling, making sure to choose only among
semantically valid choices for any given token. This makes sure
that the chosen tokens are consistent with the semantically valid

Hu et al.

Table 1: Statistical results expressed as style loss. Un-
optimized: searched or our predicted results. Optimized:
Differentiable optimized results using style loss. We
searched/predicted 30 samples and optimized 10 of them.
When computing statistics, we count for the top-5 samples
after ranking (by style loss) in order to remove outliers. The
style loss we used here as metric is the L1 difference of Gram
Matrices of VGG features plus L1 difference of 16x16 down-
sampled thumbnails (weighed by 0.1). We report Best-of-5:
the minimum loss among the top-5 samples and Average-of-
5: the average loss among the top-5 samples. Lower is better.
Our model can achieve statistically better or similar perfor-
mance comparable to search in a giant pre-generated image
database. We also include additional quantitative compar-
isons to a class-conditioned generator which has a loss of
0.0544 (Best-of-5) and 0.0774 (Avg-of-5) before optimization.
See our supplementary material for details.

Unoptimized Ours Ours (VGG) Ours Uncond Dataset
Best-of-5 0.0314 0.0300 0.0382 0.0384
Avg-of-5 0.0346 0.0329 0.0539 0.0499

Optimized Ours Ours (VGG) Ours Uncond Dataset
Best-of-5 0.0218 0.0199 0.0194 0.0191
Avg-of-5 0.0242 0.0221 0.0227 0.0237

choices for the previously generated tokens. See our supplementary
material for the detailed validation rules we apply.

After node and edge generation, an uninitialized graph is ready
for parameter prediction (Fig. 2). The graph structure serves as
a condition to the parameter sequence. Considering possible pre-
diction errors, for robust parameter generation, we regularize the
generated graph by removing unconnected nodes.

3.6.2 Ranking and Optimization. During inference, we sample each
token according to the probability distribution predicted by the
transformer until reaching the end tokens. However, the quality of
generated graphs is hard to evaluate. The cross-entropy loss of an
estimated probability for a token does not directly reflect the true
appearance distance to the input, since distance in the parameter
space does not necessarily reflect distance in the image/text space.
We would like to measure the discrepancy between the sampled
graphs and the input prompts in the same space. We therefore de-
serialize the predicted token sequences to reconstruct a material
graph. Evaluating this material graph generates material maps
we render. We can then use a CLIP cosine metric to measure the
difference between our graph’s results and the input text/images
(alternatively, a sliced Wasserstein distance [Heitz et al. 2021; Hu
et al. 2022b] can be used to measure the statistical distance to the
input images). A differentiable optimization step [Hu et al. 2022a;
Shi et al. 2020] can be further applied to refine the accuracy of
predicted parameters to better match the given inputs. We generate
multiple graph samples and rank them based on the text/image
space metrics (CLIP cosine or sliced Wasserstein) and pick the top-k
for further optimization (k=5 in our experiments). As node graphs
are not all differentiable, we limit the refinement to the optimizable
nodes only. Despite differentiable optimization limitation to adjust
parameters only —it cannot modify the generated graph topology—

Generating Procedural Materials from Text or Image Prompts

this step helps reduce the prediction appearance error, especially
in terms of color and roughness values as shown in Fig. 5. For
each image or text prompt, multiple graphs can be synthesized.
The inference takes around 1.32 seconds per graph. If performing
optimization, it takes 2 ~ 3 minutes per graph, measured on a
NVIDIA RTX 3090.

4 IMPLEMENTATION DETAILS

Our transformer-based generative models are built upon the GPT
[Brown et al. 2020] architecture. We select slightly different hidden
dimensions, layers, and heads for each transformer to adjust for
the size of our dataset (40/2/4 for node generator; 48/2/4 for edge
generator; 96/4/4 for parameter generator). Regarding node order,
we follow MatFormer to encode the node sequences in a back-to-
front breadth-first traversal order 7. For the autocompletion task,
we use reversed 7, i.e. from last to first node of 7.

We train our models with the Adam optimizer [Kingma and
Ba 2015], using a learning rate of 1e~% and a batch size of 64. We
train each transformer model in parallel on three NVIDIA V100
GPUs. The total training time for each transformer is ~22 hours for
node generator; ~28 hours for edge generator and ~36 hours for
parameter generator. During the sampling phase, we apply nucleus
filtering with a top-p value of 0.9 and sample the top-5 candidates
without adjusting the softmax temperature.

5 RESULTS

We show our conditional generative model can generate material
graphs for text or image prompts. We also show improved variety
for unconditional generation and demonstrate automatic condi-
tional graph completion. Over 90% of generated graphs are valid.
Not all generated graphs may fit the desired semantics, but gener-
ation is very fast, letting us quickly sample multiple graphs and
automatically select the top-ranked ones.

To quantitatively evaluate the performance of our model, we
compare it to two novel, challenging, CLIP-searched-based base-
lines:

e Searching and optimizing in a database of 102,400 pre-sampled
material graphs generated using the unconditional version
of our model, trained on our new augmented dataset. (Ours
Uncond)

e Searching and optimizing directly in our new augmented
dataset containing 466,700 graph variations. (Dataset)

We create a test image dataset containing 48 real photos. Given
an input photo, we retrieve the 30 closest samples in the different
databases in CLIP space and optimize (using the MATch frame-
work [Shi et al. 2020]) the top-5 samples. We additionally optimize
the top-5 (out of the 30 retrieved) samples with lowest visual sta-
tistical difference (sliced Wasserstein distance [Heitz et al. 2021]),
for a total of 10 optimized samples. For our method, we first con-
ditionally generate 150 graphs and perform the same search-and-
optimization approach. Our conditional generative model achieves
better or similar performance as shown in Table 1. We note that our
proposed alternative conditional encoding adding VGG features
(Ours (VGG)) produces slightly lower numerical error, but does
not allow for text encoding. Visually, our results, our alternative
encoding, and baselines are close, as shown in Fig. 7 (more visual

SIGGRAPH ’23 Conference Proceedings, August 6-10, 2023, Los Angeles, CA, USA

comparisons and detailed statistical analysis with precise defini-
tion of style metrics can be found in the supplemental material).
However, the storage required of our model is orders of magni-
tude smaller than the pre-generated database: only 15 MB against
115 GB. Further, our model enables additional applications such as
autocompletion (Fig. 8).

Our method can also be considered as an inverse procedural
modeling framework if using images as input. We therefore show
a comparison with the recent inverse material material modeling
framework by Hu et al. [2022c] in Fig. 10. Compared to their method,
our model doesn’t require user segmentation and can produce mul-
tiple variations rather than a single output graph. More importantly,
the gamut of the materials we handle is larger than this previous
work, as can be seen in the failure of the previous work for the
wood sample in the first row of Fig. 10.

5.1 Multi-modal Conditioning

We now evaluate our generated procedural material graphs quali-
tatively. For all conditions, we show additional results in Fig,.
1 and the supplementary materials.

5.1.1 Image Conditioning. We now show conditionally generated
graphs on randomly sampled synthetic images from the test set,
where inputs are rendered images with co-located point light. Our
generated samples are structurally and semantically close to the
input image. We however observe small color mismatch due to
prediction errors. Indeed, the color is controlled by very few pa-
rameters, which have very strong visual importance, making the
inference of the exact color challenging. We use image-space dif-
ferentiable optimization [Shi et al. 2020] to address this issue (Sec.
3.6.2).

Real photographs are more challenging to match as they can only
be approximated by procedural models in most cases. In Fig. 5, we
show three generated material graphs before and after optimization
when given real photograph inputs. Despite the challenges, our
sampled procedural graphs can reproduce the target appearance
well, matching its semantics and style. Given our generated graphs,
the optimization step is once more capable of adjusting the color and
roughness values. We also show a comparison to a class-conditioned
generation in supplemental material, illustrating the benefits of our
CLIP-based conditional generation.

5.1.2 Text Conditioning. As described in Sec. 3.3, we propose to
encode the given text prompt using CLIP and transform the em-
bedding to the CLIP image embedding. We show three generated
material graphs for each text prompt in Fig. 6. We can see that our
model can generate diverse, semantically close material graphs.

5.1.3 Unconditional Generation. Our augmented dataset and reg-
ularized sampling process benefits unconditional material graph
generation as well. We present a side-by-side comparison in our sup-
plemental material, showing more diverse samples we generated,
compared to MatFormer. We also use this unconditional version to
generate the database containing 102,400 as our baseline compari-
son (Ours Uncond in Table 1 and Fig. 7)

5.1.4 Autocompletion: Conditioning on Partial Graphs. As asequence-
based model, our model can be conditioned on partial graphs inputs

SIGGRAPH 23 Conference Proceedings, August 6-10, 2023, Los Angeles, CA, USA

and automatically predict the rest of the graph structures and pa-
rameters towards a conditional input. While MatFormer is also
capable of autocompletion, it cannot be conditioned on a particular
desired appearance. For example, in Fig. 8, we show examples of
automatic visual programming, by generating the end of a partial
graph (marked as green nodes and edges) to match target images.
This application provides interesting graph modeling exploration
possibilities for artists.

5.2 Failure Cases and Limitations

Despite the conditional results we show, limitations remain. The
biggest limitation is in the amount of data available. Although
we perform data processing and augmentation to build a material
dataset 2.32x (before filtering) or 1.65x (after filtering) larger than
previous state-of-the-art [Guerrero et al. 2022], the scale of our
dataset is still far smaller than that of the dataset used for training
large language or generative models ([Brown et al. 2020; Ramesh
et al. 2022; Rombach et al. 2022]. Augmenting the number of base
graphs is not trivial, as each is manually crafted by an artist. Our
generative model is therefore limited to the subset of appearance
and procedural material graphs which artists found useful to design.

In Figs. 9 and 11, we show failures cases of our generative model
where the generated material graphs do not match well the input
prompts for images/texts. While the overall structure is correct, the
details do not match. Further, our model currently only supports
standard PBR workflow material maps (Base Color, Normal, Rough-
ness, Metalness) as they are the most represented in the dataset.
Finally, the quantization step for token prediction is a limitation.
While we choose a finer quantization than previous work, quanti-
zation errors still happen, and predicting a continuous field rather
than discrete bins would be an interesting future work.

6 CONCLUSION AND FUTURE WORK

We present the first conditional generative model for procedural
material node graph generation. We show that our model generates
high-quality node graphs given either images or text prompts. The
proposed generative model is a new tool for users to explore the
design space of materials and has interesting applications such as
automatic visual programming (Sec. 5.1.4).

As the dataset is a crucial component, an interesting future work
would be to expand it. But more interestingly, the quality of the
graphs could be improved. We take a first step in this direction
with our cleanup step, but beyond cleanup, the existing material
graphs designed by artists do not follow standard programming
design principles. In particular, they are not necessarily intended to
be easily modified or reused. An interesting future step would be to
find reuseable sub-graphs i.e., sub-functions and expand the dataset,
using a set of hierarchically organized modules or libraries. This
would both reduce the sequence length and create more structure.

Finally, there is a gap between predicted token space error and
image/text space matching error. We currently minimize this gap
using an image/text-space optimization as a post-processing step,
but further improvement would require finding a way to evalu-
ate and minimize the image/text space error during training and
inference.

Hu et al.

ACKNOWLEDGMENTS
This work was supported in part by NSF Grant No. IIS-2007283.

REFERENCES

Adobe. 2023. Substance Designer. https://www.substance3d.com/.

Pranav Aggarwal, Hareesh Ravi, Naveen Marri, Sachin Kelkar, Fengbin Chen, Vinh
Khuc, Midhun Harikumar, Ritiz Tambi, Sudharshan Reddy Kakumanu, Purvak
Lapsiya, Alvin Ghouas, Sarah Saber, Malavika Ramprasad, Baldo Faieta, and Ajinkya
Kale. 2023. Controlled and Conditional Text to Image Generation with Diffusion
Prior. arXiv:2302.11710 [cs.CV]

Tom Brown, Benjamin Mann, Nick Ryder, Melanie Subbiah, Jared D Kaplan, Prafulla
Dhariwal, Arvind Neelakantan, Pranav Shyam, Girish Sastry, Amanda Askell, et al.
2020. Language models are few-shot learners. Advances in neural information
processing systems 33 (2020), 1877-1901.

Ilke Demir, Daniel G Aliaga, and Bedrich Benes. 2016. Proceduralization for editing
3D architectural models. In 2016 Fourth International Conference on 3D Vision (3DV).
IEEE, 194-202.

Valentin Deschaintre, Miika Aittala, Frédo Durand, George Drettakis, and Adrien
Bousseau. 2018. Single-Image SVBRDF Capture with a Rendering-Aware Deep
Network. ACM Trans. Graph. 37, 4, Article 128 (Aug 2018), 15 pages.

Valentin Deschaintre, Miika Aittala, Frédo Durand, George Drettakis, and Adrien
Bousseau. 2019. Flexible SVBRDF Capture with a Multi-Image Deep Network.
Computer Graphics Forum (Proceedings of the Eurographics Symposium on Rendering)
38, 4 (July 2019), 1-13.

Tao Du, Jeevana Priya Inala, Yewen Pu, Andrew Spielberg, Adriana Schulz, Daniela
Rus, Armando Solar-Lezama, and Wojciech Matusik. 2018. InverseCSG: Automatic
conversion of 3D models to CSG trees. ACM Transactions on Graphics (TOG) 37, 6
(2018), 1-16.

Kevin Ellis, Maxwell Nye, Yewen Pu, Felix Sosa, Josh Tenenbaum, and Ar-
mando Solar-Lezama. 2019. Write, Execute, Assess: Program Synthesis with
a REPL. In Advances in Neural Information Processing Systems, H. Wallach,
H. Larochelle, A. Beygelzimer, F. d'Alché-Buc, E. Fox, and R. Garnett (Eds.),
Vol. 32. Curran Associates, Inc. https://proceedings.neurips.cc/paper/2019/file/
50d2d2262762648589b1943078712aa6- Paper.pdf

Kevin Ellis, Daniel Ritchie, Armando Solar-Lezama, and Josh Tenenbaum.
2018. Learning to Infer Graphics Programs from Hand-Drawn Images.
In Advances in Neural Information Processing Systems, S. Bengio, H. Wal-
lach, H. Larochelle, K. Grauman, N. Cesa-Bianchi, and R. Garnett (Eds.),
Vol. 31. Curran Associates, Inc. https://proceedings.neurips.cc/paper/2018/file/
6788076842014c83cedadbe6b0ba0314-Paper.pdf

Yaroslav Ganin, Tejas Kulkarni, Igor Babuschkin, SM Ali Eslami, and Oriol Vinyals.
2018. Synthesizing programs for images using reinforced adversarial learning. In
International Conference on Machine Learning. PMLR, 1666-1675.

Duan Gao, Xiao Li, Yue Dong, Pieter Peers, Kun Xu, and Xin Tong. 2019. Deep Inverse
Rendering for High-resolution SVBRDF Estimation from an Arbitrary Number of
Images. ACM Trans. Graph. 38, 4, Article 134 (July 2019), 15 pages.

Dar’ya Guarnera, Giuseppe Claudio Guarnera, Abhijeet Ghosh, Cornelia Denk, and
Mashhuda Glencross. 2016. BRDF Representation and Acquisition. Computer
Graphics Forum 35, 2 (2016), 625-650.

Pascal Guehl, Remi Allegre, Jean-Michel Dischler, Bedrich Benes, and Eric Galin. 2020.
Semi-Procedural Textures Using Point Process Texture Basis Functions. Computer
Graphics Forum 39, 4 (2020), 159-171. https://doi.org/10.1111/cgf.14061

Paul Guerrero, Milos Hasan, Kalyan Sunkavalli, Radomir Mech, Tamy Boubekeur, and
Niloy Mitra. 2022. MatFormer: A Generative Model for Procedural Materials. ACM
Trans. Graph. 41, 4, Article 46 (2022). https://doi.org/10.1145/3528223.3530173

Jie Guo, Shuichang Lai, Chengzhi Tao, Yuelong Cai, Lei Wang, Yanwen Guo, and Ling-
Qi Yan. 2021. Highlight-Aware Two-Stream Network for Single-Image SVBRDF
Acquisition. ACM Trans. Graph. 40, 4, Article 123 (July 2021), 14 pages.

Yu Guo, Milo§ Hasan, Linggi Yan, and Shuang Zhao. 2020a. A Bayesian Inference
Framework for Procedural Material Parameter Estimation. Computer Graphics
Forum 39, 7 (2020), 255 — 266.

Yu Guo, Cameron Smith, Milo§ Hasan, Kalyan Sunkavalli, and Shuang Zhao. 2020b.
Material GAN: Reflectance Capture Using a Generative SVBRDF Model. ACM Trans.
Graph. 39, 6, Article 254 (Nov. 2020), 13 pages.

Eric Heitz, Kenneth Vanhoey, Thomas Chambon, and Laurent Belcour. 2021. A Sliced
Wasserstein Loss for Neural Texture Synthesis. In IEEE/CVF Conference on Computer
Vision and Pattern Recognition (CVPR).

Philipp Henzler, Valentin Deschaintre, Niloy] Mitra, and Tobias Ritschel. 2021. Gen-
erative Modelling of BRDF Textures from Flash Images. ACM Trans Graph (Proc.
SIGGRAPH Asia) 40, 6 (2021).

Yiwei Hu, Julie Dorsey, and Holly Rushmeier. 2019. A Novel Framework for Inverse
Procedural Texture Modeling. ACM Trans. Graph. 38, 6, Article 186 (Nov. 2019),
14 pages.

Yiwei Hu, Paul Guerrero, Milos Hasan, Holly Rushmeier, and Valentin Deschaintre.
2022a. Node Graph Optimization Using Differentiable Proxies. In ACM SIGGRAPH
2022 Conference Proceedings (Vancouver, BC, Canada). Article 5, 9 pages.

https://arxiv.org/abs/2302.11710
https://proceedings.neurips.cc/paper/2019/file/50d2d2262762648589b1943078712aa6-Paper.pdf
https://proceedings.neurips.cc/paper/2019/file/50d2d2262762648589b1943078712aa6-Paper.pdf
https://proceedings.neurips.cc/paper/2018/file/6788076842014c83cedadbe6b0ba0314-Paper.pdf
https://proceedings.neurips.cc/paper/2018/file/6788076842014c83cedadbe6b0ba0314-Paper.pdf
https://doi.org/10.1111/cgf.14061
https://doi.org/10.1145/3528223.3530173

Generating Procedural Materials from Text or Image Prompts

Yiwei Hu, Milos Ha8an, Paul Guerrero, Holly Rushmeier, and Valentin Deschaintre.
2022b. Controlling Material Appearance by Examples. Computer Graphics Forum
41, 4 (2022), 117-128. https://doi.org/10.1111/cgf.14591

Yiwei Hu, Chengan He, Valentin Deschaintre, Julie Dorsey, and Holly Rushmeier. 2022c.
An Inverse Procedural Modeling Pipeline for SVBRDF Maps. ACM Trans. Graph.
41, 2 (2022), 1-17.

Yuanming Hu, Hao He, Chenxi Xu, Baoyuan Wang, and Stephen Lin. 2018. Exposure:
A White-Box Photo Post-Processing Framework. ACM Trans. Graph. 37, 2 (2018),
26.

Justin Johnson, Bharath Hariharan, Laurens Van Der Maaten, Judy Hoffman, Li Fei-Fei,
C Lawrence Zitnick, and Ross Girshick. 2017. Inferring and executing programs for
visual reasoning. In Proceedings of the IEEE International Conference on Computer
Vision. 2989-2998.

R. Kenny Jones, Theresa Barton, Xianghao Xu, Kai Wang, Ellen Jiang, Paul Guerrero,
Niloy Mitra, and Daniel Ritchie. 2020. ShapeAssembly: Learning to Generate
Programs for 3D Shape Structure Synthesis. ACM Trans. Graph. 39, 6 (2020), Article
234.

Kacper Kania, Maciej Zieba, and Tomasz Kajdanowicz. 2020. UCSG-Net — Unsupervised
Discovering of Constructive Solid Geometry Tree. arXiv:2006.09102 (2020).

Diederik P. Kingma and Jimmy Ba. 2015. Adam: A Method for Stochastic Optimization.
In 3rd International Conference on Learning Representations, ICLR 2015, San Diego,
CA, USA, May 7-9, 2015, Conference Track Proceedings, Yoshua Bengio and Yann
LeCun (Eds.). http://arxiv.org/abs/1412.6980

Xiao Li, Yue Dong, Pieter Peers, and Xin Tong. 2017. Modeling Surface Appearance
from a Single Photograph using Self-augmented Convolutional Neural Networks.
ACM Trans. Graph. 36, 4, Article 45 (2017), 11 pages.

Albert Julius Liu, Zhao Dong, Milo§ Hasan, and Steve Marschner. 2016. Simulating the
Structure and Texture of Solid Wood. ACM Trans. Graph. 35, 6, Article 170 (Nov.
2016), 11 pages.

Sidi Lu, Jiayuan Mao, Joshua Tenenbaum, and Jiajun Wu. 2019. Neurally-guided
structure inference. In International Conference on Machine Learning. PMLR, 4144—
4153.

Alec Radford, Jong Wook Kim, Chris Hallacy, Aditya Ramesh, Gabriel Goh, Sand-
hini Agarwal, Girish Sastry, Amanda Askell, Pamela Mishkin, Jack Clark, et al.
2021. Learning transferable visual models from natural language supervision. In
International Conference on Machine Learning. PMLR, 8748-8763.

Aditya Ramesh, Prafulla Dhariwal, Alex Nichol, Casey Chu, and Mark Chen. 2022.
Hierarchical text-conditional image generation with clip latents. arXiv preprint
arXiv:2204.06125 (2022).

Elad Richardson, Yuval Alaluf, Or Patashnik, Yotam Nitzan, Yaniv Azar, Stav Shapiro,
and Daniel Cohen-Or. 2021. Encoding in Style: a StyleGAN Encoder for Image-
to-Image Translation. In IEEE/CVF Conference on Computer Vision and Pattern
Recognition (CVPR).

Robin Rombach, Andreas Blattmann, Dominik Lorenz, Patrick Esser, and Bjérn Ommer.
2022. High-Resolution Image Synthesis with Latent Diffusion Models. In Proceedings
of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR). https:
//github.com/CompVis/latent-diffusionhttps://arxiv.org/abs/2112.10752

Gopal Sharma, Rishabh Goyal, Difan Liu, Evangelos Kalogerakis, and Subhransu Maji.
2018. CSGNet: Neural Shape Parser for Constructive Solid Geometry. In The IEEE
Conference on Computer Vision and Pattern Recognition (CVPR).

Liang Shi, Beichen Li, Milo§ Hasan, Kalyan Sunkavalli, Tamy Boubekeur, Radomir
Mech, and Wojciech Matusik. 2020. MATch: Differentiable Material Graphs for
Procedural Material Capture. ACM Trans. Graph. 39, 6, Article 196 (Dec. 2020),
15 pages.

Yiren Song. 2022. CLIPTexture: Text-Driven Texture Synthesis. In Proceedings of
the 30th ACM International Conference on Multimedia (Lisboa, Portugal) (MM °22).
Association for Computing Machinery, New York, NY, USA, 5468-5476. https:
//doi.org/10.1145/3503161.3548146

Ondrej Stava, Bedrich Benes, Radomir Méch, Daniel G Aliaga, and Peter Kristof. 2010.
Inverse procedural modeling by automatic generation of L-systems. In Computer
Graphics Forum, Vol. 29. Wiley Online Library, 665-674.

Yonglong Tian, Andrew Luo, Xingyuan Sun, Kevin Ellis, William T. Freeman, Joshua B.
Tenenbaum, and Jiajun Wu. 2019. Learning to Infer and Execute 3D Shape Programs.
In International Conference on Learning Representations.

Omer Tov, Yuval Alaluf, Yotam Nitzan, Or Patashnik, and Daniel Cohen-Or. 2021.
Designing an Encoder for StyleGAN Image Manipulation. ACM Trans. Graph. 40, 4,
Article 133 (jul 2021), 14 pages. https://doi.org/10.1145/3450626.3459838

Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones, Aidan N
Gomez, L ukasz Kaiser, and Illia Polosukhin. 2017. Attention is All you
Need. In Advances in Neural Information Processing Systems, I. Guyon, U. Von
Luxburg, S. Bengio, H. Wallach, R. Fergus, S. Vishwanathan, and R. Garnett (Eds.),
Vol. 30. Curran Associates, Inc. https://proceedings.neurips.cc/paper/2017/file/
3f5ee243547dee91fbd053c1c4a845aa-Paper.pdf

Oriol Vinyals, Meire Fortunato, and Navdeep Jaitly. 2015. Pointer networks. Advances
in neural information processing systems 28 (2015).

Homer Walke, R Kenny Jones, and Daniel Ritchie. 2020. Learning to infer shape
programs using latent execution self training. arXiv:2011.13045 (2020).

SIGGRAPH ’23 Conference Proceedings, August 6-10, 2023, Los Angeles, CA, USA

Bruce Walter, Stephen R. Marschner, Hongsong Li, and Kenneth E. Torrance. 2007.
Microfacet Models for Refraction Through Rough Surfaces. In Proceedings of the
18th Eurographics Conference on Rendering Techniques (Grenoble, France). 195-206.

Chenming Wu, Haisen Zhao, Chandrakana Nandji, Jeffrey I Lipton, Zachary Tatlock,
and Adriana Schulz. 2019. Carpentry compiler. ACM Trans. Graph. 38, 6 (2019),
1-14.

Xianghao Xu, Wenzhe Peng, Chin-Yi Cheng, Karl DD Willis, and Daniel Ritchie.
2021. Inferring CAD modeling sequences using zone graphs. In Proceedings of the
IEEE/CVF Conference on Computer Vision and Pattern Recognition. 6062—-6070.

Wenjie Ye, Yue Dong, Pieter Peers, and Baining Guo. 2021. Deep Reflectance Scanning:
Recovering Spatially-varying Material Appearance from a Flash-lit Video Sequence.
Computer Graphics Forum (2021). https://doi.org/10.1111/cgf.14387

Xilong Zhou, Milos Hasan, Valentin Deschaintre, Paul Guerrero, Kalyan Sunkavalli, and
Nima Khademi Kalantari. 2022. TileGen: Tileable, Controllable Material Generation
and Capture. CoRR abs/2206.05649 (2022). https://doi.org/10.48550/arXiv.2206.
05649 arXiv:2206.05649

Xilong Zhou and Nima Khademi Kalantari. 2021. Adversarial Single-Image SVBRDF
Estimation with Hybrid Training. Computer Graphics Forum 40, 2 (2021), 315-325.

https://doi.org/10.1111/cgf.14591
http://arxiv.org/abs/1412.6980
https://github.com/CompVis/latent-diffusionhttps://arxiv.org/abs/2112.10752
https://github.com/CompVis/latent-diffusionhttps://arxiv.org/abs/2112.10752
https://doi.org/10.1145/3503161.3548146
https://doi.org/10.1145/3503161.3548146
https://doi.org/10.1145/3450626.3459838
https://proceedings.neurips.cc/paper/2017/file/3f5ee243547dee91fbd053c1c4a845aa-Paper.pdf
https://proceedings.neurips.cc/paper/2017/file/3f5ee243547dee91fbd053c1c4a845aa-Paper.pdf
https://doi.org/10.1111/cgf.14387
https://doi.org/10.48550/arXiv.2206.05649
https://doi.org/10.48550/arXiv.2206.05649
https://arxiv.org/abs/2206.05649

SIGGRAPH 23 Conference Proceedings, August 6-10, 2023, Los Angeles, CA, USA Hu et al.

Input Images Generated Graphs Input Images Generated Graphs Input Images Generated Graphs Input Images Generated Graphs

-
1
N
£
S
2
S

Unoptimized
Unoptimized
Unoptimized

optimized
optimized
optimized
optimized

Figure 4: Synthetic Image Conditioning. We show three generated procedural material for each input. For each example, the
top row shows non-optimized outputs directly predicted by our models, while the bottom row shows our final output after
optimization, which easily rectifies the colors.

Input Images Generated Graphs \‘Inpu‘tylmages Input Images Generated Graphs

Unoptimized
Unoptimized

5 g

<N N

7 ///‘i?}f\‘ ‘p\;/ &7
SN

optimized
optimized

Unoptimized
Unoptimized
Unoptimized

o
o
N
£
3]
o

optimized

°
o]
N
£
o

Unoptimized
Unoptimized
Unoptimized

optimized
optimized

Figure 5: Real Image Conditioning. We show real photos as inputs and three of our generated material graphs. For each example,
the top row shows non-optimized outputs directly predicted by our models, while the bottom row shows our final output after
optimization. See supplemental material for more results.

"red glossy leather"

SN
SN
AN

OO

"galvanized steel"

"anodized aluminum" "patterned pavement"]] "wooden panels birch”

Figure 6: Text Conditioning. Our model generates multiple procedural material graphs given various text prompts. See
supplemental material for more results.

Generating Procedural Materials from Text or Image Prompts

Input Images Top-5 Samples

Our Uncond Ours(VGG)

Dataset

Figure 7: We show visual comparisons to our baselines. The
top-5 samples are used to calculate the statistics shown in
Table 1. Visually, our model generates material graphs simi-
lar to a query in a huge database.

Input Images

Autocompleted Graphs

Input Images Autocompleted Graphs

Figure 8: As a sequential model, our model can accept partial
sequences (partially completed material graphs) and gener-
ate the rest of the structures and parameters toward image
prompts. As in Fig. 1, existing structures are blue and our
predicted are green. See supplemental for more results.

Input Images Generated Graphs

Figure 9: Our method is unable to reproduce the detailed
appearance of some image inputs due to limited training
data and prediction errors.

SIGGRAPH ’23 Conference Proceedings, August 6-10, 2023, Los Angeles, CA, USA

Not Available

Input Ours Hu et al’s results and label map

Figure 10: Comparison to the state-of-the-art inverse pro-
cedural modeling method. The semi-automatic pipeline by
Hu et al. [2022¢] requires segmentation as a starting point.
However, not all material maps are easily segmentable e.g,
the wood pattern, causing the first step of the algorithm to
fail (first row). We show the scribbles used in the matting
algorithm (segmentation) overlapped with the albedo map
(Inset). Additionally, they model the appearance by approxi-
mating the Power Spectrum Density (PSD) of each material
using a Gaussian noise, which is not expressive enough to
model the appearance of some materials (second row struc-
ture and third row appearance).

"animal skin tiger"

Figure 11: Material graphs sampled by text prompts do not
always generate realistic materials which match the expected
appearance given the text prompt.

	Abstract
	1 Introduction
	2 Related Work
	2.1 Program and Graph Generation in Graphics
	2.2 Inverse Procedural Material Modeling
	2.3 Material Acquisition and Generation

	3 Conditional Material Graph Generation
	3.1 Overview
	3.2 Node Graphs
	3.3 Conditional Generative Model
	3.4 Material Graph Dataset
	3.5 Training
	3.6 Sampling, Ranking and Optimization

	4 Implementation Details
	5 Results
	5.1 Multi-modal Conditioning
	5.2 Failure Cases and Limitations

	6 Conclusion and Future Work
	Acknowledgments
	References

