
COFS: COntrollable Furniture layout Synthesis
Wamiq Reyaz Para

wamiq.para@kaust.edu.sa

KAUST

Saudi Arabia

Paul Guerrero

guerrero@adobe.com

Adobe Research

UK

Niloy J. Mitra

nimitra@adobe.com

University College London and Adobe Research

UK

Peter Wonka

pwonka@gmail.com

KAUST

Saudi Arabia

Figure 1: (A) Current autoregressive layout generators provide limited user-control over the generated results, since any

generated value (denoted by black triangles) in the sequence representation of a layout can only be conditioned on values 𝑐 that

occur earlier in the sequence. (B) We propose COFS, a layout generator with an encoder-decoder architecture that allows all

values in the sequence to be given as condition. This enables conditioning a generated layout on an arbitrary subset of objects

or object attributes, which is impossible with current autoregressive layout generators. (C1, C2) Only the position of an object,

shown as pink cuboid, is given as a condition, and COFS performs context-aware generation of the remaining attributes, such

as object type and orientation. (D1) Only object types are provided as condition. (D2) Bed orientation is added to the condition.

Note how the layout adapts to fit the updated condition.

ABSTRACT

Realistic, scalable, and controllable generation of furniture layouts

is essential for many applications in virtual reality, augmented re-

ality, game development and synthetic data generation. The most

successful current methods tackle this problem as a sequence gen-

eration problem which imposes a specific ordering on the elements

of the layout, making it hard to exert fine-grained control over

the attributes of a generated scene. Existing methods provide con-

trol through object-level conditioning, or scene completion, where

generation can be conditioned on an arbitrary subset of furniture

objects. However, attribute-level conditioning, where generation

can be conditioned on an arbitrary subset of object attributes, is

not supported. We propose COFS, a method to generate furniture

layouts that enables fine-grained control through attribute-level

conditioning. For example, COFS allows specifying only the scale

SIGGRAPH ’23 Conference Proceedings, August 6–10, 2023, Los Angeles, CA, USA
© 2023 Copyright held by the owner/author(s).

This is the author’s version of the work. It is posted here for your personal use. Not for

redistribution. The definitive Version of Record was published in Special Interest Group
on Computer Graphics and Interactive Techniques Conference Conference Proceedings
(SIGGRAPH ’23 Conference Proceedings), August 6–10, 2023, Los Angeles, CA, USA,
https://doi.org/10.1145/3588432.3591561.

and type of objects that should be placed in the scene and the gen-

erator chooses their positions and orientations; or the position that

should be occupied by objects can be specified and the generator

chooses their type, scale, orientation, etc. Our results show both

qualitatively and quantitatively that we significantly outperform

existing methods on attribute-level conditioning.

CCS CONCEPTS

• Computing methodologies→ Shape modeling.

KEYWORDS

Furniture layout, transformers, conditional generation

ACM Reference Format:

Wamiq Reyaz Para, Paul Guerrero, Niloy J. Mitra, and Peter Wonka. 2023.

COFS: COntrollable Furniture layout Synthesis. In Special Interest Group
on Computer Graphics and Interactive Techniques Conference Conference
Proceedings (SIGGRAPH ’23 Conference Proceedings), August 6–10, 2023, Los
Angeles, CA, USA. ACM, New York, NY, USA, 11 pages. https://doi.org/10.

1145/3588432.3591561

https://orcid.org/0000-0003-4013-9157
https://orcid.org/0000-0002-7568-2849
https://orcid.org/0000-0002-2597-0914
https://orcid.org/0000-0003-0627-9746
https://doi.org/10.1145/3588432.3591561
https://doi.org/10.1145/3588432.3591561
https://doi.org/10.1145/3588432.3591561

SIGGRAPH ’23 Conference Proceedings, August 6–10, 2023, Los Angeles, CA, USA Wamiq Reyaz Para, Paul Guerrero, Niloy J. Mitra, and Peter Wonka

1 INTRODUCTION

Automatic generation of realistic assets enables content creation

at a scale that is not possible with traditional manual workflows.

It is driven by the growing demand for virtual assets in both the

creative industries, virtual worlds, and increasingly data-hungry

deep model training. In the context of automatic asset generation,

3D scene and layout generation plays a central role as much of the

demand is for the types of real-world scenes we see and interact

with every day, such as building interiors.

Deep generative models for assets like images, videos, 3D shapes,

and 3D scenes have come a long way to meet this demand. In

the context of 3D scene and layout modeling, in particular auto-

regressive models based on transformers enjoy great success. In-

spired by language modeling, these architectures treat layouts as

sequences of tokens that are generated one after the other and

typically represent attributes of furniture objects, such as the type,

position, or scale of an object. These architectures are particularly

well suited for modeling spatial relationships between elements of

a layout. For example, [Para et al. 2021] generate two-dimensional

interior layouts with two transformers, one for furniture objects

and one for spatial constraints between these objects, while Scene-

Former [Wang et al. 2021] and ATISS [Paschalidou et al. 2021]

extend interior layout generation to 3D.

A key limitation of a basic autoregressive approach is that it

only provides limited control over the generated scene. It enforces

a sequential generation order, where new tokens can only be con-

ditioned on previously generated tokens and in addition it requires

a consistent ordering of the token sequence. This precludes both

object-level conditioning, where generation is conditioned on a par-

tial scene, e.g., an arbitrary subset of furniture objects, and attribute-
level conditioning, where generation is conditioned on an arbitrary

subset of attributes of the furniture objects, e.g., class or position

of target objects. Most recently, ATISS [Paschalidou et al. 2021]

partially alleviates this problem by randomly permuting furniture

objects during training, effectively enabling object-level conditioning.
However, attribute-level conditioning still remains elusive.

We aim to improve on these results by enabling attribute-level

conditioning, in addition to object-level conditioning. For example,

a user might be interested to ask for a room with a table and two

chairs, without specifying exactly where these objects should be

located. Another example is to perform object queries for given

geometry attributes. The user could specify the location of an object

and query the most likely class, orientation, and size of an object at

the given location. Our model thereby extends the baseline ATISS

with new functionality while retaining all its existing properties

and performance.

The main technical difficulty in achieving attribute-level condi-

tioning is due to the autoregressive nature of the generative model.

Tokens in the sequence that define a scene are generated iteratively,

and each step only has information about the previously generated

tokens. Thus, the condition can only be given at the start of the

sequence, otherwise some generation steps will miss some of the

conditioning information. The main idea of our work is to allow

for attribute-level conditioning using two mechanisms: (i) Like

ATISS, we train our generator to be approximately invariant to

object permutations by randomly permuting furniture objects at

training time. This enables object-level conditioning since an arbi-

trary subset of objects can be given as the start of the sequence. To

condition on a partial set of object attributes however, the condition

is not restricted to the start of the sequence. Attributes that are

given as condition follow unconstrained attributes that need to be

generated. (ii) To give our autoregressive model knowledge of the

entire conditioning information in each step, we additionally use

a transformer encoder that provides cross-attention over the com-

plete conditioning information in each step. These two mechanisms

allow us to accurately condition on arbitrary subsets of the token

sequence. Our main competitor ATISS [Paschalidou et al. 2021]

can only perform object-level conditioning and predicts attributes

in a fixed order. Consequently, it cannot partially specify object

attributes as a condition (cf. Fig. 10).

In our experiments, we demonstrate four applications: (i) attribute-

level conditioning, (ii) attribute-level outlier detection, (iii) object-

level conditioning, and (iv) unconditional generation. We compare

to three current state-of-the-art layout generationmethods [Paschali-

dou et al. 2021; Ritchie et al. 2019; Wang et al. 2021] and show

performance that is on par or superior on unconditional generation

and object-level conditioning, while also enabling attribute-level

conditioning, which, to the best of our knowledge, is currently not

supported by any existing layout generation method.

2 RELATEDWORK

We discuss recent work that we draw inspiration from. In particular,

we build on previous work in Indoor Scene Synthesis, Masked

Language Models, and Set Transformers.

Indoor Scene Synthesis: Before the rise of deep-learning methods,

indoor scene synthesis methods relied on layout guidelines devel-

oped by skilled interior designers, and an optimization strategy

such that the adherence to those guidelines is maximized [Fisher

et al. 2012;Weiss et al. 2019; Yu et al. 2011]. Such optimization is usu-

ally based on sampling methods like simulated annealing, MCMC,

or rjMCMC. Deep learning based methods, e.g. [Paschalidou et al.

2021; Ritchie et al. 2019; Wang et al. 2019, 2021] are substantially

faster and can better capture the variability of the design space. The

state-of-the-art methods among them are autoregressive in nature.

All of these operate on a top-down view of a partially generated

scene. PlanIT [Wang et al. 2019] and FastSynth[Ritchie et al. 2019]

then autoregressively generate the rest of the scene. FastSynth uses

separate CNNs+MLPs to create probability distributions over loca-

tion, size and orientation and categories. PlanIT on the other hand

generates graphs where nodes are objects and edges are constraints

on those objects. Then a scene is instantiated by solving a CSP on

that graph.

Recentmethods, SceneFormer [Wang et al. 2021] andATISS [Paschali-

dou et al. 2021] use transformer based architectures to sidestep the

problem of rendering a partial scene which makes PlanIT and Fast-

Synth slow. This is because using a transformer allows the model

to accumulate information from previously generated objects us-

ing the attention mechanism. SceneFormer flattens the scene into

a structured sequence of the object attributes, where the objects

are ordered lexicographically in terms of their position. It then

trains a separate model for each of the attributes. ATISS breaks the

requirement of using a specific order by training on all possible

COFS: COntrollable Furniture layout Synthesis SIGGRAPH ’23 Conference Proceedings, August 6–10, 2023, Los Angeles, CA, USA

Figure 2: COFS Overview. (Left): We use a BART-like encoder-decoder model, with bidirectional attention in the encoder and an

autoregressive decoder. The encoder encodes the layout as a set without ordering information and therefore does not receive

(absolute) position tokens. However, to disambiguate a single object, the encoder receives additional information in the form of

Relative Position Tokens R𝑖
, and the Object Index Tokens O𝑖

. During training, object order is randomly permuted and a random

proportion of tokens is replaced with a [MASK] token. The decoder outputs a sequence representation of the set and is trained

with Absolute Position Tokens P𝑖
. It performs two tasks - 1. copy-paste: the decoder copies the unmasked attributes to their

proper location 2: mask-prediction: the decoder predicts the actual value of the token corresponding to a [MASK] token in the

encoder input. (Right): During inference, we measure the likelihood of a given test set token using an input sequence where

only this token is masked out.

permutations of the object order and removing the position encod-

ing. In addition, it uses a single transformer model for all attributes

and relies on different decoding heads which makes it substan-

tially faster than other models while also having significantly fewer

parameters.

Masked Language Models: Masked Language Models (MLMs)

like BERT [Devlin et al. 2019], ROBERTa [Liu et al. 2019], and

BART [Lewis et al. 2020] are pretrained on large amounts of unla-

beled data in an unsupervised fashion, and are then fine-tuned on a

much smaller labeled dataset. These fine-tunedmodels show impres-

sive performance on their corresponding downstream tasks. How-

ever, the generative capability of thesemodels has not beenmuch ex-

plored except by Wang et al. in [Wang and Cho 2019], which uses a

Gibbs-sampling approach to sample from a pre-trained BERTmodel.

In follow up work, [Mansimov et al. 2020], proposes more general

sampling approaches. However, the sample quality is still inferior

to autoregressive models like GPT-2 [Radford et al. 2019] and GPT-

3 [Brown et al. 2020]. More recently, MLMs have received renewed

interest especially in the context of image-generation [Chang et al.

2022; Issenhuth et al. 2021]. MaskGIT [Chang et al. 2022] shows

that with a carefully designed masking schedule, high quality image

samples can be generated fromMLMs with parallel sampling which

makes them much faster than autoregressive models. Edi-BERT [Is-

senhuth et al. 2021] shows that the BERT masking objective can be

succesfully used with a VQGAN [Esser et al. 2021] representation of

an image to perform high quality image editing. Our model resem-

bles BART used as a generative model. Most related to our proposed

method is the concurrent work BLT [Kong et al. 2022], where the

authors propose a BERT-style decoder-only model. However, they

still use a specific ordering amongst attribute types, which restricts

the subset of attributes that can be used as condition, unlike our

method that does not have such a restriction.

Set Transfomers: Zaheer et al. [Zaheer et al. 2017] introduced a

framework called DeepSets providing a mathematical foundation

for networks operating on set-structured data. A key insight is

that operations in the network need to be permutation invariant.

Methods based on such a formulation were extremely successful,

especially in the context of point-could processing [Charles et al.

2017; Ravanbakhsh et al. 2016]. Transformer models without any

form of positional encoding are permutation invariant by design.

Yet, almost all the groundbreaking works in transformers use some

from of positional encoding, as in objection detection [Carion et al.

2020], language generation [Brown et al. 2020; Radford et al. 2019],

and image-generation [Chang et al. 2022]. One of the early at-

tempts to use a truly permutation invariant set transformer was

in Set Transformer [Lee et al. 2019], who methodically designed

principled operations that are permutation invariant but could only

achieve respectable performance in toy-problems. However, recent

work based on [Lee et al. 2019] shows impressive performance

in 3d-Object Detection [Chenhang He and Zhang 2022], 3d Pose

Estimation [Ugrinovic et al. 2022], and SFM [Moran et al. 2021].

3 METHOD

Our goal is a generative model of object layouts that allows for

both object-level and attribute-level conditioning. Attribute-level

conditioning enables flexible partial layout specification, like speci-

fying only the number and types of objects in a layout, but not their

positions, or exploring suggestions for plausible objects at given

positions in the layout. Figure 2 shows an architecture overview.

3.1 Layout Representation

We focus on 3D layouts in our experiments. A 3D layoutL = (I,B)
is composed of two elements - a top-down representation of the

layout boundary I, such as the walls of a room, and a set of 𝑘

three-dimensional oriented bounding-boxes B = {𝐵𝑖 }𝑘𝑖=1 of the

objects in the layout. The boundary is given as a binary raster

image and each bounding box is represented by four attributes:

𝐵𝑖 = (𝜏𝑖 , 𝑡𝑖 , 𝑒𝑖 , 𝑟𝑖), representing the object class, center position,

size, and orientation, respectively. The orientation is a rotation

about the up-axis, giving a total of 8 scalars per bounding box. The

SIGGRAPH ’23 Conference Proceedings, August 6–10, 2023, Los Angeles, CA, USA Wamiq Reyaz Para, Paul Guerrero, Niloy J. Mitra, and Peter Wonka

layout is arranged into a sequence 𝑆 by concatenating all bounding

box parameters. Additionally, special start and stop tokens SOS
and EOS are added to mark the start and the end of a sequence:

𝑆 = [SOS;𝐵1; . . . ;𝐵𝑘 ; EOS], where [;] denotes concatenation. The
layout boundary I is not generated by our method, but it is used

as condition, Section 3.3 provides details.

3.2 Generative Model

We use a transformer-based generative model, as these types of

generative models have shown great performance in the current

state of the art. Originally proposed as a generative model for lan-

guage, transformer-based generative models represents layouts

as a sequence of tokens 𝑆 = (𝑠1, . . . , 𝑠𝑛) that are generated auto-

regressively; one token is generated at a time, based on all previ-

ously generated tokens:

𝑝 (𝑠𝑖 |𝑆<𝑖) = 𝑓𝜃 (𝑆<𝑖), (1)

where 𝑝 (𝑠𝑖 |𝑆<𝑖) is the probability distribution over the value of

token 𝑠𝑖 , computed by the generative model 𝑓𝜃 given the previously

generated tokens 𝑆<𝑖 = (𝑠1, . . . , 𝑠𝑖−1). We sample from 𝑝 (𝑠𝑖 |𝑆<𝑖)
to obtain the token 𝑠𝑖 . Each token represents one attribute of an

object, and groups of adjacent tokens correspond to objects. More

details on the layout representation are described in Section 3.1.

Limitations of traditional conditioning. To condition a transformer-

based generative model on a partial sequence 𝐶 = (𝑐0, . . . , 𝑐𝑚), we
can replace tokens of 𝑆 with the corresponding tokens of 𝐶 , giving

us the sequence 𝑆𝐶 . This is done after each generation step, so that

the probability for the token in each step is conditioned on 𝑆𝐶
<𝑖

instead of 𝑆<𝑖 :

𝑝 (𝑠𝐶𝑖 |𝑆
𝐶
<𝑖) = 𝑓𝜃 (𝑆𝐶<𝑖). (2)

Each generated token 𝑠𝐶
𝑖
in 𝑆𝐶 (i.e. tokens that are not replaced by

tokens in𝐶) needs to have knowledge of the full condition during its

generation step, otherwise the generated valuemay be incompatible

with some part of the condition. Therefore, since each generated

token 𝑠𝑖 only has information about the partial sequence 𝑆𝐶
<𝑖

of

tokens that are closer to the start of the sequence, the condition

can only be given as start of the sequence:

𝑠𝐶𝑖 =

{
𝑐𝑖 if 𝑖 ≤ |𝐶 |
𝑠𝑖 otherwise.

(3)

Typically both the objects and the attributes of the objects in

the sequence are consistently ordered according to some strategy,

for example based on a raster order of the object positions [Para

et al. 2021], or on the object size [Wang et al. 2019]. Therefore, a

generative model 𝑓 ordered
𝜃

that is only trained to generate sequences

in that order cannot handle different orderings, so that in general:

𝑓 ordered
𝜃

(𝑆𝐶<𝑖) ≠ 𝑓 ordered
𝜃

(𝜋𝑜 (𝑆𝐶<𝑖)), (4)

where 𝜋𝑜 is a random permutations of the objects in sequence 𝑆<𝑖 .

The consistent ordering improves the performance of the generative

model, but also presents a challenge for conditioning: it limits the

information that can appear in the condition. In a bedroom layout,

for example, if beds are always generated before nightstands in

the consistent ordering, the layout can never be conditioned on

nightstands only, as this would preclude the following tokens from

containing a bed.

Object-level conditioning. Recent work [Paschalidou et al. 2021]

tackles this issue by forgoing the consistent object ordering, and

instead training the generator to be approximately invariant to

permutations 𝜋𝑜 of objects in the sequence:

𝑓𝜃 (𝑆𝐶<𝑖) ≈ 𝑓𝜃 (𝜋𝑜 (𝑆𝐶<𝑖)), (5)

This makes generation more difficult, but enables object-level con-

ditioning by allowing conditioning on arbitrary subset of objects,

as now arbitrary objects can appear at the start of the sequence.

However, since only objects are permuted and not their attributes, it

does not allow conditioning on subsets of object attributes. Permut-

ing object attributes to appear at arbitrary positions in the sequence

is not a good solution to enable attribute-level conditioning, as this

would make it very hard for the generator to determine which

attribute corresponds to which object.

Attribute-level conditioning. We propose to extend previous work

to allow for attribute-level conditioning by using two different

conditioning mechanisms, in addition to the approximate object

permutation invariance: First, similar to previous work, we provide

the condition as partial sequence𝐶 . However, unlike previous work,

some tokens in the condition are unconstrained and will not be

used to replace generated tokens. We introduce special mask tokens

M in 𝐶 to mark these unconstrained tokens. For example, if all

tokens corresponding to object positions and orientations in 𝐶 are

mask tokens, the positions and orientations will be generated by

our model, only the remaining tokens: object types and sizes will

be constrained by the condition. The tokens 𝑠𝐶
𝑖
of the constrained

sequence 𝑆𝐶 are then defined as:

𝑠𝐶𝑖 =

{
𝑐𝑖 if 𝑖 ≤ |𝐶 | and 𝑐𝑖 ≠ M
𝑠𝑖 otherwise.

(6)

Second, to provide information about the full condition to each

generated token, we modify 𝑓𝜃 to use a transformer encoder 𝑔𝜙
that encodes the condition 𝐶 into a set of feature vectors that each

generated token has access to:

𝑝 (𝑠𝐶𝑖 |𝑆
𝐶
<𝑖 ,𝐶) = 𝑓𝜃 (𝑆𝐶<𝑖 ,𝐶

𝑔) where 𝐶𝑔 = {𝑔𝜙 (𝑐1,𝐶), . . . , 𝑔𝜙 (𝑐 |𝐶 | ,𝐶)},
(7)

where𝐶𝑔
is the output of the encoder, a set of encoded condition to-

kens.We use a standard transformer encoder-decoder setup [Vaswani

et al. 2017] for 𝑓𝜃 and 𝑔𝜙 , implementation details are provided in

Section 3.3, and the complete architecture is described in detail in

the appendix.

Parameter probability distributions. The generative model out-

puts a probability distribution over one scalar component of the

bounding box parameters in each step. Probability distributions

over the discrete object class 𝜏 are represented as vectors of log-

its 𝑙𝜏 over discrete choices that can be converted to probabilities

with the softmax function. Similar to previous work [Paschalidou

et al. 2021; Salimans et al. 2017], we represent probability distribu-

tions over continuous parameters, like the center position, size, and

COFS: COntrollable Furniture layout Synthesis SIGGRAPH ’23 Conference Proceedings, August 6–10, 2023, Los Angeles, CA, USA

orientation, as mixture of 𝑇 logistic distributions.

𝑝 (𝑏) = 1∑
𝑖 𝜋𝑖

𝑇∑︁
𝑖=1

𝛼𝑖Logistic(𝜇𝑖 , 𝜎𝑖), 𝑝 (𝜏) = softmax(𝑙𝜏),

(8)

where 𝑏 is a single scalar attribute from 𝑡𝑖 , 𝑒𝑖 , or 𝑟𝑖 . The mixture

weight, mean and variance of the logistic distribution components

are denoted as 𝛼 , 𝜇, 𝜎 , respectively. Each probability distribution

over a continuous scalar component is parameterized by a 3𝑇 -

dimensional vector, and probability distributions over the object

class are represented as 𝑛𝜏 -dimensional vectors, where 𝑛𝜏 is the

number of object classes.

3.3 Implementation

Condition encoder 𝑔𝜙 : To encode the condition 𝐶 into a set of en-

coded condition tokens 𝐶𝑔
, we use a Transformer encoder with

full bidirectional attention. As positional encoding, we provide two

additional sequences: object index tokens O𝑖
provide for each token

the object index in the permuted sequence of objects; and relative
position tokens R𝑖

provide for each token the element index inside

the attribute tuple of an object. Since the attribute tuples are consis-

tently ordered the index can be used to identify the attribute type

of a token. These sequences are used as additional inputs to the

encoder. The encoder architecture is based on BART [Lewis et al.

2020], details are provided in the appendix.

Boundary encoder𝑔I
𝜓
: To allow conditioning on the layout bound-

ary I, we prepend a feature vector encoding 𝑧I of the boundary

to the input of the condition encoder, as shown in Figure 2, so that

the encoder receives both 𝑧I and the condition sequence𝐶 . Similar

to ATISS, we use an untrained ResNet-18 [He et al. 2016] to encode

a top-down view of the layout boundary into an embedding vector.

Generative model 𝑓𝜃 : The generative model is implemented as a

Transformer decoder with a causal attention mask. Each block of

the decoder performs cross-attention over the encoded condition

tokens 𝐶𝑔
. As positional encoding, we provide absolute position

tokens P, which provide for each token the absolute position in

the sequence 𝑆 . This sequence is used as additional input to the

generative model. The output of the generative model in each step

is one of the parametric probability distributions described in Eq. 8.

Since the probability distributions for discrete and continuous val-

ues have a different numbers of parameters, we use a different final

linear layer in the generative model for continuous and discrete pa-

rameters. Similar to the encoder, the architecture of the generative

model is based on BART [Lewis et al. 2020].

Training: During training, we create a ground truth sequence

𝑆GT with randomly permuted objects. We generate the condition𝐶

as a copy of 𝑆GT and mask out a random percentage of the tokens

by replacing them with the mask token M. The boundary encoder

𝑔I
𝜓
, the condition encoder 𝑔𝜙 and the generative model 𝑓𝜃 are then

trained jointly, with the task to generate the full sequence 𝑆GT. For

unmasked tokens in 𝐶 , this is a copy task from 𝐶 to the output

sequence 𝑆 . For masked tokens, this is a scene completion task. We

use the negative log-likelihood loss between the predicted proba-

bilities 𝑝 (𝑠𝑖) and ground truth values 𝑠GT
𝑖

for tokens corresponding

to continuous parameters, and the cross-entropy loss for the object

category 𝜏 . The model is trained with teacher-forcing.

Sampling: We generate a sequence auto-regressively, one token

at a time, by sampling the probability distribution predicted by the

generative model (as defined in Eq. 7) in each step. We use the same

model for both conditional and unconditional generation. For un-

conditional generation, we start with a condition𝐶 where all tokens

are mask tokenM. To provide more complete information about

the partially generated layout to the encoded condition tokens 𝐶𝑔
,

we update the condition 𝐶 after each generation step by replacing

mask tokens with the generated tokens. Empirically, we observed

that this improves generation performance. An illustration and

the full algorithm of this approach is shown in the supplementary.

Once a layout has been generated, we populate the bounding boxes

with objects from the dataset with a simple retrieval scheme. For

each bounding box, we pick the object of the given category 𝜏 that

best matches the size of the bounding box. In the supplementary,

we present an ablation of the tokens O𝑖
, R𝑖

, and P that we add to

the conditional encoder and generative model.

4 RESULTS

Datasets:We train and evaluate ourmodel on the 3D-FRONT dataset [Fu

et al. 2021]. It consists of of about 10k indoor furniture layouts cre-

ated by professional designers. We train on the Bedroom category

and follow ATISS preprocessing which removes a few problem-

atic layouts that have intersections between objects, mislabeled

objects, or layouts that have extremely large or small dimensions.

For further details on the preprocessing, we refer the reader to

ATISS [Paschalidou et al. 2021]. This yields approximately 6k/224,

0.6k/125, 3k/516 and 2.6k/583 total/test set layouts for Bedroom,

Library, Dining, Living, respectively.

Baseline: ATISS [Paschalidou et al. 2021] is the most recent furni-

ture layout generation method that provides the largest amount of

control over the generated layout, and is therefore most related to

our method. However, ATISS does not provide pretrained models,

hence we train their models using the official code
1
matching their

training settings as closely as possible. While ATISS does not sup-

port attribute-level conditioning, we can still use it as a baseline by

applying the sampling procedure defined in Eq. 6: we sample tokens

as usual, but when reaching a token that is given as condition (i.e.

a token in 𝐶 that is not a mask token), we replace the sampled

value with the value of the condition. ATISS samples the class first,

followed by translation, size and orientation.

Note that permuting attributes in ATISS may seem like a straight-

forward solution for attribute-level conditioning in ATISS. How-

ever, this would lead to several unsolved problems: (i) The per-

muted sequence of attributes would require additional information

to determine which attribute corresponds to which scene object.

This information would also need to be generated along with the

attribute values. It is unclear what form this information should

take to work well with the transformer. (ii) Currently, the main

transformer in ATISS generates one token per object instead of per

attribute, so a significant change to ATISS would be necessary to

allow for permuted attribute tokens.

1
https://github.com/nv-tlabs/atiss, commit 0cce45b

https://github.com/nv-tlabs/atiss

SIGGRAPH ’23 Conference Proceedings, August 6–10, 2023, Los Angeles, CA, USA Wamiq Reyaz Para, Paul Guerrero, Niloy J. Mitra, and Peter Wonka

Realism % no error

0

50

100

ATISS

COFS

ATISS-attrib

COFS-attrib

Figure 3: Perceptual Study. We compare the percentage of

comparisons in which users found either method more real-

istic (left), and in which users did not find any obvious errors

such as object intersections (right), with 95% confidence inter-

vals as error bars. Results show a large advantage for COFS in

realism of layouts generated with attribute-level condition-

ing (-attrib), and a smaller, but still significant advantage in

the percentage of error-free layouts. This advantage is also

present in the unconditional setting.

Unconditional Object Attribute

0

250

500

N
L

L

ATISS COFS

Figure 4: NLL comparison. We compare the NLL of our

method to ATISS in three settings: unconditional generation,

object-level conditioning, and attribute-level conditioning;

all three on layouts from the Bedroom test set.

4.1 Perceptual Study

We conducted two perceptual studies to evaluate the quality of

generated furniture layouts compared to ATISS. One of the studies

focused on unconditionally generated layouts and the other on lay-

outs generated with attribute-level conditioning. For this purpose,

we randomly sampled layouts from the Bedroom layouts evaluated

in the previous section for both COFS and ATISS. Subjects were

shown a pair of layouts generated from the same floorplan bound-

ary by COFS and ATISS, and asked these questions: which of the

layouts looked more realistic, and for each of the two layouts, if

it showed obvious errors like intersections. A total of 9 subjects

participated in the unconditional study, and 8 subjects participated

in the attribute-level study. More details about setup can be found in

the supplementary. Figure 3 shows the results. We can see that the

our method produces significantly more realistic layouts compared

to ATISS. The error plots on the right-hand side show that this only

in some part due to avoiding obvious errors such as intersections.

These results are further validated in the next section.

4.2 Quantitative Results

Metrics: For unconditional generation, we use the negative log-

likelihood of test set sequences in our model as main quantitative

metric. A small NLL shows that a model approximates the dataset

distribution well. For both object-level and attribute-level condition-
ing, we use the NLL of the generated sequences as the metric. The

NLL computation includes the condition tokens that come from

the test set. If the generated layout does not harmonize with the

condition, the NLL will be high.

Choosing conditions: For object-level conditioning, we remove

three random objects from each test set sequence to obtain condi-

tion sequences 𝐶 . For attribute-level conditioning, conditions 𝐶 are

obtained from test set sequences by replacing all tokens except size

and position tokens with mask tokens, effectively conditioning on

the sizes and positions of all objects, and letting the generator infer

the types and orientations of all objects.

Discussion: Figure 4 shows NLL results on the Bedroom category.

For unconditional generation, we can see that we perform on par

or slightly better than ATISS. We believe that our slight advantage

here might be due a more fine-grained sequence representation of

the layout on our side, which allows for more detailed attention. For

object-level conditioning, our performance is slightly better than

ATISS, again because of detailed attention. Our main contribution,

however, lies in attribute-level conditioning, where we can see a

clear advantage for our method. Since ATISS cannot look ahead

in the sequence, any generated token cannot take into account

future condition tokens. The bidirectional attention of our encoder

enables look-ahead and gives the generator knowledge of all future

condition tokens, giving us generated layouts that can better adapt

to the supplied condition.

Constraint Satisfaction: ATISS cannot constrain on future tokens.

However, ATISS can still be used to generate constrained layouts

by performing rejection-sampling [Gentle 2000].

1 2 3 4

Number of Constraints

100

101

102

A
ve

ra
ge

S
am

pl
es

N
ee

de
d

ATISS

COFS

This means we generate samples un-

conditionally and discard any samples

that do not satisfy our given constraints.

This is obviously quite inefficient. In the

inset figure, we quantify how inefficient

ATISS is in comparison to COFS. The

x-axis is the number of constrains we

enforce, and the y-axis is the average number of samples needed

to satisfy those constraints. This is performed over the whole test

set of Bedroom and the constraints are chosen to be locations of

the Ground Truth objects. A sample is considered a success if it is

within 𝜖 = 0.01 of the constraint. We see that for COFS, the number

is almost constant regardless of the number of constraints, as the

model learns to copy-paste attributes supplied as constraints.

We see that COFS almost always needs a single sample to sat-

isfy the constraints. The number is higher than 1 because of a

few reasons - 1. sampling is inherently random and sometimes the

samples are produced which are further than the threshold 𝜖 , 2.

L-shaped boundaries sometimes provide strong priors which makes

the model ignore the condition. ATISS, on the other struggles as the

number of constraints increases. This is expected - with increasing

number of constraints, the search space grows exponentially. Over-

all, our proposed method is many orders of magnitude faster than

ATISS for attribute-level conditioning, especially when considering

timing details as well (cf. Table 1).

COFS: COntrollable Furniture layout Synthesis SIGGRAPH ’23 Conference Proceedings, August 6–10, 2023, Los Angeles, CA, USA

4.3 Qualitative Results

A few examples of furniture layouts generated with attribute-level

conditioning are shown in Figure 1 and in Figure 5. See the cap-

tions for details. Figure 7 additionally shows how attribute-level

conditioning can be used to perform sequential edits of a furniture

layout.

COFS can be used to generate layouts with some control on

the generated attributes (see Discussion, supplementary). We show

examples of such control in Fig. 6 where we generate bedroom

layouts with control of the bed direction by constraining the bed

angle and see that the model generates reasonable layouts. To have

more control, we now also constrain to have a dressing-table
opposite the bed. COFS generates good layouts for these constraints.
ATISS which samples angles after location cannot perform such a

task.

4.4 Additional Applications

In addition to attribute-level conditioning, we show that COFS can

also be used for the applications proposed by ATISS.

Scene Completion: In Figure 8, we show layouts generated with

object-level conditioning, providing the objects shown in the top

row as condition. In order to perform this task, the existing object

attributes are added to the start of the sequence as condition and

the object attributes to be generated are masked. Sampling and

replacing each [MASK] token leads to a complete layout. We see

that in each example, our method generates a plausible layout.

Outlier Detection: As a second application, we show how to use

use COFS to perform outlier detection. To estimate the likelihood of

a token at position 𝑖 , we follow [Salazar et al. 2020] and replace the

token at 𝑖th position with [MASK]. This can be performed in parallel

by creating a batch in which only one element is replaced with

[MASK]. The likelihood of one object is then the product of likeli-

hoods of all its attributes. Attributes or objects with low likelihood

can then be resampled. Results on several of the layout categories

of our dataset are shown in Figure 9. This can be thought of as a

form of attributed-conditioned generation.

4.5 More Unconditional Generation

Experiments

Here we present additional experiments with unconditional gen-

eration. We include two additional state-of-the art methods for

unconditional generation, FastSynth [Ritchie et al. 2019] and Scene-

Former [Wang et al. 2021], in our quantitative results.

We use a set of metrics that mostly derive from [Paschalidou

et al. 2021; Ritchie et al. 2019]. They are defined in greater detail in

the supplementary. Following [Ritchie et al. 2019], we report the

KL-divergence between the distribution of the classes of generated

objects and the distribution of classes of the objects in the test set.

We further report the Classification Accuracy Score (CAS) [Paschali-

dou et al. 2021]. Additionally, we compute the FID by rendering

the populated layout from a top-down view using an orthographic

camera at a resolution of 256 × 256. We report the FID computed

between these rendered top down images of sampled layouts and

the renders of the ground truth layouts. We also compare the time

required to generate a single scene for different categories and the

number of parameters required by each model. Our model requires

significantly less time and fewer parameters than existing methods.

Slightly over 50% of our parameters come by the ResNet-18 [He

et al. 2016] boundary encoder. Thus, our proposed network is very

light.

Results are shown in Table 1. The results suggest that overall,

COFS performs roughly on par or slightly superior to ATISS, with

slightly inferior results in the CAS metric, comparable results in

the FID metrics, and more substantially improved results in the

KL-divergence metric. Details of these metrics and examples of

unconditionally generated layouts are shown in the supplementary.

5 CONCLUSIONS

Weproposed a new framework to produce layoutswith auto-regressive

transformers with arbitrary conditioning information. While previ-

ous work was only able to condition on a set of complete objects,

we extend this functionality and also allow for conditioning on

individual attributes of objects. Our framework thereby enables

several new modeling applications that cannot be achieved by any

published framework.

Limitations and Future Work. The first limitation of our model is

related to our simple object retrieval scheme based only on bound-

ing box sizes. This often leads to stylistically different objects in

close proximity even if the bounding box dimensions are only

slightly different. We show such an example in the inset. The sec-

ond is related to the training objective of the model - we only

consider the cross entropy/NLL. Thus, the network does not have

explicit knowledge of design principles such as non-intersection, or

object co-occurrence. This means that the model completely relies

on the data being high-quality to ensure such output.

In the supplementary, we highlight the fact that certain scenes in

the dataset have problematic layouts, and our method cannot filter

them out. We show an example of intersections in the inset (center).

Thirdly, the the performance on the Living and Dining datasets

is not as good as the other classes, which is clear from the CAS

scores. This is in part because the datasets are small but also have

significantly more objects than Bedroom or Library. This leads

to accumulated errors. We would like to explore novel sampling

strategies to mitigate such errors. Lastly, while the conditioning

works well, it is not guaranteed to generate a good layout. For

example, in the inset (right), we set the condition to be two beds

opposite each other, but the network is unable to place them in valid

locations. Adding explicit design knowledge would help mitigate

such arrangements, but we leave that extension to future work.

ACKNOWLEDGMENTS

This work was supported by the SDAIA-KAUST Center of Excel-

lence in Data Science and Artificial Intelligence (SDAIA-KAUST

AI). The authors would also like to acknowledge support from the

UCL AI Centre and gifts from Adobe.

SIGGRAPH ’23 Conference Proceedings, August 6–10, 2023, Los Angeles, CA, USA Wamiq Reyaz Para, Paul Guerrero, Niloy J. Mitra, and Peter Wonka

Figure 5: Attribute-level conditioning: On the left, we show a GT floorplan. We set the condition to include two beds facing

opposite directions and sample. The model generates two plausible layouts for this challenging case (see supplementary). On

the right, we constrain the location of the next object to be sampled. The location is highlighted in pink. In this example, the

network automatically infers the proper class and size. The constraints force the inferred size into a narrow range, such that

the chair even matches the style of the chairs in the example on the left, even though we use a simple object-retrieval scheme.

Table 1: Comparison on Unconditional Generation: We provide floorplan boundaries from the Ground Truth as an input to the

methods and compare the quality of generate layouts. We retrain the ATISS model and report metrics. The retrained model is

called ATISS
∗
.

CAS ×102(↓) KL-Divergence ×103 (↓) FID (↓) Synthesis Time (ms) (↓)
Params (×106) (↓)

Bedroom Living Dining Library Bedroom Living Dining Library Bedroom Living Dining Library Bedroom Living Dining Library

FastSynth 88.3 94.5 93.5 81.5 6.4 17.6 51.8 43.1 88.1 66.6 58.9 86.6 13193.77 30578.54 26596.08 10813.87 38.1

SceneFormer 94.5 97.2 94.1 88.0 5.2 31.3 36.8 23.2 90.6 68.1 60.1 89.1 849.37 731.84 901.17 369.74 129.29

ATISS
∗

61.1 76.4 69.1 61.77 8.6 14.1 15.6 10.1 73.0 43.32 47.66 75.34 102.38 201.59 201.84 88.24 36.05

Ours 61.0 78.9 76.1 66.2 5.0 8.1 9.3 6.7 73.2 35.9 43.12 75.72 33.69 77.37 76.75 29.32 19.44

REFERENCES

Tom B. Brown, Benjamin Mann, Nick Ryder, Melanie Subbiah, Jared Kaplan, Pra-

fulla Dhariwal, Arvind Neelakantan, Pranav Shyam, Girish Sastry, Amanda Askell,

Sandhini Agarwal, Ariel Herbert-Voss, Gretchen Krueger, Tom Henighan, Rewon

Child, Aditya Ramesh, Daniel M. Ziegler, Jeffrey Wu, Clemens Winter, Christo-

pher Hesse, Mark Chen, Eric Sigler, Mateusz Litwin, Scott Gray, Benjamin Chess,

Jack Clark, Christopher Berner, Sam McCandlish, Alec Radford, Ilya Sutskever,

and Dario Amodei. 2020. Language Models are Few-Shot Learners. (2020).

arXiv:2005.14165 [cs.CL]

Nicolas Carion, FranciscoMassa, Gabriel Synnaeve, Nicolas Usunier, Alexander Kirillov,

and Sergey Zagoruyko. 2020. End-to-End Object Detection with Transformers. In

ECCV.
Huiwen Chang, Han Zhang, Lu Jiang, Ce Liu, and William T. Freeman. 2022. MaskGIT:

Masked Generative Image Transformer. In The IEEE Conference on Computer Vision
and Pattern Recognition (CVPR).

R. Qi Charles, Hao Su, Mo Kaichun, and Leonidas J. Guibas. 2017. PointNet: Deep

Learning on Point Sets for 3D Classification and Segmentation. In 2017 IEEE
Conference on Computer Vision and Pattern Recognition (CVPR). 77–85. https:

//doi.org/10.1109/CVPR.2017.16

Shuai Li Chenhang He, Ruihuang Li and Lei Zhang. 2022. Voxel Set Transformer: A

Set-to-Set Approach to 3D Object Detection from Point Clouds. In Proceedings of
the IEEE Conference on Computer Vision and Pattern Recognition.

Jacob Devlin, Ming-Wei Chang, Kenton Lee, and Kristina Toutanova. 2019. BERT:

Pre-training of Deep Bidirectional Transformers for Language Understanding. In

Proceedings of the 2019 Conference of the North American Chapter of the Association
for Computational Linguistics: Human Language Technologies, Volume 1 (Long and
Short Papers). Association for Computational Linguistics, Minneapolis, Minnesota,

4171–4186. https://doi.org/10.18653/v1/N19-1423

Patrick Esser, Robin Rombach, and Björn Ommer. 2021. Taming Transformers for

High-Resolution Image Synthesis. In 2021 IEEE/CVF Conference on Computer Vision
and Pattern Recognition (CVPR). 12868–12878. https://doi.org/10.1109/CVPR46437.

2021.01268

Matthew Fisher, Daniel Ritchie, Manolis Savva, Thomas Funkhouser, and Pat Hanrahan.

2012. Example-Based Synthesis of 3D Object Arrangements. ACM Trans. Graph.
31, 6, Article 135 (Nov 2012), 11 pages. https://doi.org/10.1145/2366145.2366154

Huan Fu, Bowen Cai, Lin Gao, Ling-Xiao Zhang, Jiaming Wang, Cao Li, Qixun Zeng,

Chengyue Sun, Rongfei Jia, Binqiang Zhao, and Hao Zhang. 2021. 3D-FRONT:

3D Furnished Rooms with layOuts and semaNTics. In 2021 IEEE/CVF International
Conference on Computer Vision (ICCV). 10913–10922. https://doi.org/10.1109/

ICCV48922.2021.01075

James Gentle. 2000. Monte Carlo Statistical Methods by C. P. Robert; G. Casella.

Journal of the Royal Statistical Society. Series D (The Statistician) 49 (01 2000), 632–
633. https://doi.org/10.2307/2681053

KaimingHe, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. 2016. Deep Residual Learning

for Image Recognition. In 2016 IEEE Conference on Computer Vision and Pattern
Recognition (CVPR). 770–778. https://doi.org/10.1109/CVPR.2016.90

Thibaut Issenhuth, Ugo Tanielian, Jérémie Mary, and David Picard. 2021. EdiBERT, a

generative model for image editing. arXiv preprint arXiv:2111.15264 (2021).
Xiang Kong, Lu Jiang, Huiwen Chang, Han Zhang, Yuan Hao, Haifeng Gong, and

Irfan Essa. 2022. BLT: Bidirectional Layout Transformer For Controllable Layout

Generation. In Computer Vision – ECCV 2022: 17th European Conference, Tel Aviv,
Israel, October 23–27, 2022, Proceedings, Part XVII (Tel Aviv, Israel). Springer-Verlag,
Berlin, Heidelberg, 474–490. https://doi.org/10.1007/978-3-031-19790-1_29

Juho Lee, Yoonho Lee, Jungtaek Kim, AdamKosiorek, Seungjin Choi, and YeeWhye Teh.

2019. Set Transformer: A Framework for Attention-based Permutation-Invariant

Neural Networks. In Proceedings of the 36th International Conference on Machine
Learning. 3744–3753.

Mike Lewis, Yinhan Liu, NamanGoyal, Marjan Ghazvininejad, AbdelrahmanMohamed,

Omer Levy, Veselin Stoyanov, and Luke Zettlemoyer. 2020. BART: Denoising

Sequence-to-Sequence Pre-training for Natural Language Generation, Translation,

and Comprehension. In Proceedings of the 58th Annual Meeting of the Association
for Computational Linguistics. Association for Computational Linguistics, Online,

7871–7880. https://doi.org/10.18653/v1/2020.acl-main.703

Yinhan Liu, Myle Ott, Naman Goyal, Jingfei Du, Mandar Joshi, Danqi Chen, Omer Levy,

Mike Lewis, Luke Zettlemoyer, and Veselin Stoyanov. 2019. Roberta: A robustly

optimized bert pretraining approach. arXiv preprint arXiv:1907.11692 (2019).
Elman Mansimov, Alex Wang, and Kyunghyun Cho. 2020. A Generalized Framework

of Sequence Generation with Application to Undirected Sequence Models. https:

//openreview.net/forum?id=BJlbo6VtDH

Dror Moran, Hodaya Koslowsky, Yoni Kasten, Haggai Maron, Meirav Galun, and

Ronen Basri. 2021. Deep Permutation Equivariant Structure from Motion. In

2021 IEEE/CVF International Conference on Computer Vision (ICCV). 5956–5966.
https://doi.org/10.1109/ICCV48922.2021.00592

Wamiq Para, Paul Guerrero, Tom Kelly, Leonidas Guibas, and Peter Wonka. 2021.

Generative Layout Modeling using Constraint Graphs. In 2021 IEEE/CVF Interna-
tional Conference on Computer Vision (ICCV). 6670–6680. https://doi.org/10.1109/

ICCV48922.2021.00662

Despoina Paschalidou, Amlan Kar, Maria Shugrina, Karsten Kreis, Andreas Geiger, and

Sanja Fidler. 2021. ATISS: Autoregressive Transformers for Indoor Scene Synthesis.

In Advances in Neural Information Processing Systems (NeurIPS).
Alec Radford, Jeff Wu, Rewon Child, David Luan, Dario Amodei, and Ilya Sutskever.

2019. Language Models are Unsupervised Multitask Learners. (2019).

Siamak Ravanbakhsh, Jeff Schneider, and Barnabas Poczos. 2016. Deep learning with

sets and point clouds. arXiv preprint arXiv:1611.04500 (2016).
Daniel Ritchie, Kai Wang, and Yu-An Lin. 2019. Fast and Flexible Indoor Scene

Synthesis via Deep Convolutional Generative Models. In 2019 IEEE/CVF Con-
ference on Computer Vision and Pattern Recognition (CVPR). 6175–6183. https:

//doi.org/10.1109/CVPR.2019.00634

Julian Salazar, Davis Liang, Toan Q. Nguyen, and Katrin Kirchhoff. 2020. Masked

LanguageModel Scoring. In Proceedings of the 58th Annual Meeting of the Association
for Computational Linguistics. Association for Computational Linguistics, Online,

2699–2712. https://doi.org/10.18653/v1/2020.acl-main.240

https://arxiv.org/abs/2005.14165
https://doi.org/10.1109/CVPR.2017.16
https://doi.org/10.1109/CVPR.2017.16
https://doi.org/10.18653/v1/N19-1423
https://doi.org/10.1109/CVPR46437.2021.01268
https://doi.org/10.1109/CVPR46437.2021.01268
https://doi.org/10.1145/2366145.2366154
https://doi.org/10.1109/ICCV48922.2021.01075
https://doi.org/10.1109/ICCV48922.2021.01075
https://doi.org/10.2307/2681053
https://doi.org/10.1109/CVPR.2016.90
https://doi.org/10.1007/978-3-031-19790-1_29
https://doi.org/10.18653/v1/2020.acl-main.703
https://openreview.net/forum?id=BJlbo6VtDH
https://openreview.net/forum?id=BJlbo6VtDH
https://doi.org/10.1109/ICCV48922.2021.00592
https://doi.org/10.1109/ICCV48922.2021.00662
https://doi.org/10.1109/ICCV48922.2021.00662
https://doi.org/10.1109/CVPR.2019.00634
https://doi.org/10.1109/CVPR.2019.00634
https://doi.org/10.18653/v1/2020.acl-main.240

COFS: COntrollable Furniture layout Synthesis SIGGRAPH ’23 Conference Proceedings, August 6–10, 2023, Los Angeles, CA, USA

Tim Salimans, Andrej Karpathy, Xi Chen, and Diederik P. Kingma. 2017. PixelCNN++:

A PixelCNN Implementation with Discretized Logistic Mixture Likelihood and

Other Modifications. In ICLR.
Nicolas Ugrinovic, Adria Ruiz, Antonio Agudo, Alberto Sanfeliu, and Francesc Moreno-

Noguer. 2022. Permutation-Invariant Relational Network for Multi-person 3D Pose

Estimation. arXiv preprint arXiv:2204.04913 (2022).
Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones, Aidan N.

Gomez, Łukasz Kaiser, and Illia Polosukhin. 2017. Attention is All You Need. In

Proceedings of the 31st International Conference on Neural Information Processing
Systems (Long Beach, California, USA) (NIPS’17). Curran Associates Inc., Red Hook,

NY, USA, 6000–6010.

Alex Wang and Kyunghyun Cho. 2019. Bert has a mouth, and it must speak: Bert as a

markov random field language model. arXiv preprint arXiv:1902.04094 (2019).
Kai Wang, Yu-An Lin, Ben Weissmann, Manolis Savva, Angel X. Chang, and Daniel

Ritchie. 2019. PlanIT: Planning and Instantiating Indoor Scenes with Relation

Graph and Spatial Prior Networks. ACM Trans. Graph. 38, 4, Article 132 (jul 2019),
15 pages. https://doi.org/10.1145/3306346.3322941

XinpengWang, Chandan Yeshwanth, and Matthias Nießner. 2021. Sceneformer: Indoor

scene generation with transformers. In 2021 International Conference on 3D Vision
(3DV). IEEE, 106–115.

Tomer Weiss, Alan Litteneker, Noah Duncan, Masaki Nakada, Chenfanfu Jiang, Lap-

Fai Yu, and Demetri Terzopoulos. 2019. Fast and Scalable Position-Based Layout

Synthesis. IEEE Transactions on Visualization and Computer Graphics 25, 12 (2019),
3231–3243. https://doi.org/10.1109/TVCG.2018.2866436

Lap-Fai Yu, Sai-Kit Yeung, Chi-Keung Tang, Demetri Terzopoulos, Tony F. Chan,

and Stanley J. Osher. 2011. Make It Home: Automatic Optimization of Furniture

Arrangement. ACM Trans. Graph. 30, 4, Article 86 (Jul 2011), 12 pages. https:

//doi.org/10.1145/2010324.1964981

Manzil Zaheer, Satwik Kottur, Siamak Ravanbakhsh, Barnabas Poczos, Ruslan R

Salakhutdinov, and Alexander J Smola. 2017. Deep Sets. In Advances in Neural
Information Processing Systems 30, I. Guyon, U. V. Luxburg, S. Bengio, H. Wal-

lach, R. Fergus, S. Vishwanathan, and R. Garnett (Eds.). Curran Associates, Inc.,

3391–3401. http://papers.nips.cc/paper/6931-deep-sets.pdf

https://doi.org/10.1145/3306346.3322941
https://doi.org/10.1109/TVCG.2018.2866436
https://doi.org/10.1145/2010324.1964981
https://doi.org/10.1145/2010324.1964981
http://papers.nips.cc/paper/6931-deep-sets.pdf

SIGGRAPH ’23 Conference Proceedings, August 6–10, 2023, Los Angeles, CA, USA Wamiq Reyaz Para, Paul Guerrero, Niloy J. Mitra, and Peter Wonka

Figure 6: Fine-grained conditioning: GT is on the left. In the middle two columns, we constrain the first class to be bed, and set

a constraint on the angle of the bed, and see that the rest of the layout arranges to fit the constraints. In the next two columns,

we constrain the layout to contain a dressing-table at an angle opposite to the bed. The dressing-tables are highlighted.

COFS: COntrollable Furniture layout Synthesis SIGGRAPH ’23 Conference Proceedings, August 6–10, 2023, Los Angeles, CA, USA

Figure 7: Sequential edits with attribute-level conditioning: We show how COFS can be used to selectively edit parts of a scene.

Left shows GT and the other two are samples with classes and orientation as condition. When we change orientation of a few

objects (bed, nightstand and wardrobe first, then only bed and nightstand) , COFS produces realistic layouts affecting only a

part of the scene. More details in the supplementary.

Figure 8: Object-level conditioning. In the top row, we show examples of object-level conditions that were used to condition

generation of the scenes shown below. The generated layouts all plausibly combine the generated objects with the objects given

as condition into realistic layouts.

Figure 9: Outlier detection: Our model can utilize bidirectional attention to reason about unlikely arrangements of furniture.

We can then sample new attributes that create a more likely layout. In contrast, ATISS can only sample whole objects. Top row:

An object is perturbed to create an outlier (highlighted in blue). Bottom row: The object can be identified by its low likelihood,

and new attributes sampled which place it more naturally.

Figure 10: Conditioning on the future: We condition the models on GT locations and sizes and predict rotation and angles. As

ATISS can only sample location after class, the baseline method of Section 4 produces bad layouts. COFS on the other hand is

able to reconstruct the GT layout closely.

	Abstract
	1 Introduction
	2 Related Work
	3 Method
	3.1 Layout Representation
	3.2 Generative Model
	3.3 Implementation

	4 Results
	4.1 Perceptual Study
	4.2 Quantitative Results
	4.3 Qualitative Results
	4.4 Additional Applications
	4.5 More Unconditional Generation Experiments

	5 Conclusions
	Acknowledgments
	References

